Journal of Computational Physié$3,216-248 (2000)

®
doi:10.1006/jcph.2000.6572, available online at http://www.idealibrary.col DE &l.

The Random Projection Method for Hyperbolic
Conservation Laws with Stiff Reaction Terms

Weizhu Baé and Shi JiR

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
E-mail: wbao@math.gatech.edu, jin@math.gatech.edu

Received June 9, 1999; revised May 17, 2000

We propose a random projection method for numerical simulations of hyperbolic
conservation laws with stiff source terms arising from chemically reactive flows:

U+ FU)x+GU)y = :gL‘If(U)-
In this problem, the chemical time scales may be orders of magnitude faster than the
fluid dynamical time scales, making the problem numerically stiff. A classic spurious
numerical phenomenon, the incorrect propagation speeds of discontinuities, occurs
in underresolved numerical solutions. We introduce a random projection method for
the reaction term by replacing the ignition temperature with a uniformly distributed
random variable. The statistical average of this method corrects the spurious shock
speed, as will be proved with a scalar model problem and demonstrated by a wide
range of numerical examples in inviscid detonation waves in both one and two space
dimensions. (© 2000 Academic Press

1. INTRODUCTION

Hyperbolic systems with stiff source terms arise, among many other applications,
the modeling of chemically reactive flows. Restricting our attention to inviscid flows, w
describe the underlying physical equations by the compressible Euler equations of
dynamics, coupled with source terms representing the chemical reaction. In two sp
dimensions these equations take the form

U+ FU)x+GU)y = %‘P(U), (1.1)
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whereU is the vector of dependent variables with components mass, momentum, t(
energy, and density or concentration for each species in the reacting mixture. The
functionsF (U) andG(U) describe the fluid dynamical convection, while the source terr
W (U) arises from the chemistry of the reacting specids.the reaction time.

The kinetics equations often include reactions with widely varying time scales. Moreov
many of the chemical time scales may be orders of magnitude faster than the fluid dynarn
time scales. This can lead to problems of numerical stiffness. Even a stable (for example,
an implicit source) scheme could lead to spurious numerical propagation speed wher
reactiontime scale is not properly resolved numerically. This phenomenon was first obse!
by Colellaet al. [7], who made a study of the limiting behavior with increasing stiffnes:
for various model systems. In particular, they looked at the Euler equations coupled wi
single chemical variable representing the mass fraction of unburnt gas in a detonation w
These waves have the structure of a fluid dynamic shock that raises the pressure to
peak value, followed immediately by a reaction zone that brings the pressure back dow
a new equilibrium value. On coarse grids it is not possible to resolve this combustion sy
and the best one can hope for is a single discontinuity linking the two equilibrium values ¢
moving at the correct speed. They obtained the correct combustion spike and correct s
of discontinuities only with very fine grids; i.e., the reaction zone was completely resolv
(at least 30 grid points in the reaction zone). In contrast, they observed that on coarse
(i.e., when the reaction zone was not resolved) the numerical solutions were qualitati
incorrect. The computed solution consisted of a weak detonation wave, in which all
chemical energy was released, followed by fluid dynamic shock traveling more slowly. T
numerical reaction wave always traveled much faster than the physical one, and the s
becomes one grid point per time step when the ratio of the time step over the reaction tin
very large. Ben-Artzi [1] observed the same phenomenon in solving reactive flows using
solution of the generalized Riemann problem. Using scalar models, LeVeque and Yee
studied this spurious numerical phenomenon. They showed that this phenomenon is d
the introduction of nonequilibrium values through numerical dissipation in the advecti
step, which triggers the reaction too early. See also [18].

Since the numerical viscosity is the cause of the incorrect speed, a natural ideais to a
any numerical viscosity. In [5] Chorin introduced the random choice method for reacti
flows, which originated from the classical Glimm scheme [13] for hyperbolic systems. Sir
the random choice method does not introduce numerical viscosity, no spurious waves
occur. In[11], Engquist and Sjogreen proposed a temperature extrapolation method, w
uses the extrapolated temperature value from outside the shock profile, and obtaine
correct detonation speed.

Since numerical viscosity is an essential feature for modern high-resolution sho
capturing methods, itis highly desirable to develop methods for reacting flows that, inst
of avoiding the numerical viscosity, make correct use of it. The random projection mett
proposed here is such a method. Our method consists of the typical two steps: solving
homogeneous hyperbolic conservation laws by a standard modern shock-capturing me
and then performing a projection step for the stiff reaction term. In the underresol
regimes, where the numerical time step is much greater than the reacting time, all C
solvers for the reaction term essentially reduce to a projection operator (which will be cal
thedeterministic projection in this paper), which projects the chemically nonequilibrium
data into the equilibrium ones according to the value of the temperature relative to the i
tion temperature. Itis this projection that causes the incorrect speed because the numer
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smeared nonequilibrium temperature, once above the ignition temperature, will trigger
chemical reaction too early, forcing the front to move. Unless the ignition temperature
suffciently high this will always happen [2, 18]. This is purely a grid effect. Since ther
is no correlation between the numerical shock location and the grid, a natural and rol
way to handle this numerical difficulty is through a random method. Our idea is, in tl
projection step, toeplace the ignition temperature with uniformly distributed random
variable, defined in a suitable domain. Upon a suitable choice of the sampling sequer
at each time step, the front either moves one grid point or does not move, but the statis
average yields the correct speed!

For model scalar conservation laws with stiff source terms, we prove that the first-or
random projection method can indeed capture the correct speed of discontinuity (i.e., ob
the correct jumps in the correct locations) with first-order accuracy.

The random projection method clearly differs from the random choice method of Cho
[5]. The random choice method is a Godunov type method that uses the Riemann or ¢
the generalized Riemann (for hyperbolic systems with source terms) solver. The ranc
projection method uses the randomness only for the reaction term, while in the convec
step, any modern shock capturing methods, including the efficient methods free of Riem
solvers and local characteristic decompositions, can be used.

The paper is organized as follows. In Section 2 we first introduce the random project
method for a scalar model problem. We prove that this method, when the first order upw
or Lax—Friedrichs method is used for the nonlinear convection, yields the correct sh
speed with an error 0O (h|In h|), whereh is the grid size. We also present numerical
examples for this scalar model. Furthermore, we apply this method to problems with the
Ricatti source. In Section 3 we extend this method to the computation of two-dimensio
scalar hyperbolic conservation laws with stiff source terms. Numerical results show that
random projection method yields the correct speed of reaction front. In Section 4 we ext
this method to the computation of one-dimensional detonation waves. Numerical exam
for a variety of detonation waves are presented. In Section 5 we extend this method tc
computation of two-dimensional detonation waves. In Section 6 we draw some conclusic

2. ONE-DIMENSIONAL SCALAR PROBLEMS

We firstintroduce the random projection method for a model problem, studiedin[12, 1
Consider the hyperbolic conservation law with stiff source term

1
U+ fuy=-U-—a)d-ud), —-l<a<l, (2.1)
&
with piecewise constant initial data

1 X < Xo,

u(x, 0) = up(x) = { (2.2)

-1, X > Xo.

Heree is the reaction timef is a convex function ofi, i.e., f”(u) > 0; andxg is a given
point.

The source term in (2.1) admits three local equilibria, the unstableieaer and the
stable onea = +1. Whenthe solutionis at equilibrium, the reaction term has no effect. Th
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the exact solution is a shock discontinuity connecting 1 withu = —1 and propagating
to the right with a speed determined by the Rankine—Hugoniot jump condition

1
s= E[f(l) — f(-D]. (2.3)
Namely,
1 if
u(x, t) = { ’ X=X+t (2.4)
-1, if X > Xo+ st.

Note that the speed does not depend on the specific vatudltis is the key to the success
of the random projection method, which we introduce next.

Let h be the grid size and &t be the time step. The numerical solution is evaluate
at the pointsih,nk), i =0,+1,+2,..., n=0,1, 2,.... Letu] approximateu(ih, nk)
and letu" be the solution vector dafi(-, nk) at timet, = nk. When the reaction term is
resolved, i.ek = O(h) « ¢, any method that works well for the homogeneous hyperboli
conservation law still works well here. Here we are interested in the underresolved c:
wherek = O(h) > &.

A standard numerical method, which allows an underresolved discretization, is the fr
tional step method that solves the homogeneous convection

u+ f(uy =0 (2.5)

followed by the reaction step
1 2
U = —(Uu—a)(d—u°). (2.6)
&

Let S (k) denote the discrete operator for the homogeneous system (2.5) over a time
of durationk, and letS (k) be the numerical integrator for the ODE system (2.6). Then th
fraction step method takes the form

u™ = S(k) Sk u". (2.7

One may use any high-resolution shock capturing methodsfte). Let u* = S(k)u".
Whenk > ¢, the solution of the ODE (2.6) approaches the equilibrium stafieexponen-
tially fast. Whether it approaches 1 el depends on whetheris bigger or smaller than
a [12]. ThusS (k) becomes effectively thdeterministic projection operator:

_ Ml 1, if uf > o )
SK): ujtt = ) , forall j. (2.8)
-1, ifuj <o

This standard method was studied in [16], where it was found thatpife, the numerical
shock moves one grid point per time step. This is the case when the smeared*value
above the critical value,, which will be projected into 1 by the projection step, forcing
the shock to advance one grid point. If the smeared vafus belowq, u will always be
projected to-1, and then the shock will not move at all. Whethéiis greater or less than
« depends on the CFL number.
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2.1. The Random Projection Method

The idea of the random projection method is to replace the unstable equilibrium,
the critical valueg, with a uniformly distributed random sequertes (—1, 1). Letu* =
S(ku". We replace§ by S, where

_ L 1, if uj > th _
S K): ujt = ] , forallj. (2.9)
-1, if uj < 6n

In this method, one random value{ef, | n =0, 1, 2, ...} will be selected per time step for
all grid points.

This idea is based on the observation that there is no correlation between the centt
the shock and the grid. One hopes that the statistical average will automatically correct
wrong speed.

2.2. The Choice of the Random Sequefice

In [9], several sampling schemes were proposed and compared for the random ch
method of Chorin [4, 5]. Here and in our practical computations, we always use van
Corput’s sampling scheme. The merit of this scheme is that it produces an equidistribt
sequence on the interval [0, 1], and among all known uniformly distributed sequences
deviation of van der Corput’s sequence is minimal [14]. The detailed scheme is the followil
Letl<n=>}",ik2, ik =0, 1, be the binary expansion of the integehen the van
der Corput sequence, with range in [0, 1], is given by

m
In= k2 *P n=12_... (2.10)
k=0

We rescale it in order to get a sequeg®n [—1, 1]:
On = 20, — 1, n=21,2,.... (2.11)
In order to get the error estimate of our random projection method based on the

der Corput sequence, we recall some properties of the van der Corput sampling sequ
{9h,n=1,2,...}[14]. ltis rather illuminating to list its first few elements:

1‘}—1 19—1 19—3 19—1
1—27 2—47 3—47 4—87
19—5 15‘—3 19—7 19—1
5_85 6_87 7_85 8_169
One can see that

1 <3, ifniseven
191:_7 ﬁnz . .

2 >1,  ifn>1lisodd

In general, if one divides the unit interval into the subinten@®s, (r + 1)27%),r =
0,1,...,25 —1, then for each there is exactly one, 25 — 1 < n < 25t — 1, such that
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Une[r27s, (r + 1)279). Let
N{j=m+1....n30 el} (2.12)

denote the number df, n; < j < ny, such thaty; is contained in an interval c [0, 1].
Let

§(9,ny, g, 1) =

N{j=n+1...n:oel)—|l (2.13)
No — Ngp

be the difference between the proportion of times thais contained il C [0, 1] and let
|1] be the length of . The following result [14] is rather useful in our error estimate in the
next section.

LEMMA 2.1. For the binary van der Corput sampling sequence

3In2(n, — 1
5(19, ng, Ny, |) < n( (:2 :1)) + s Yng,nol. (2.14)
2— 11

The above inequality shows that the binary van der Corput sampling sequence is equ
tributed on the interval [0, 1] since lif, o 8(¥, N1, N2, |) = O for each fixedhy, |. Thus
the sequenc®, | n =1, 2, ...} is equidistributed on the intervaHL, 1].

Remark 2.1. Of course, the van der Corput sampling sequence is not random (it
actually pseudo-random [14]). Since this method has the random spirit and is origine
from the classical random choice method, we still call the method a random project
method. It is an interesting project to investigate the behavior of other random or pseu
random sequences for this method.

2.3. An Error Estimate on the Numerical Shock Speed

Now we will prove that the random projection method, when combined with the firs
order upwind method or the Lax—Friedrichs method for the convection term, can capt
the correct location of discontinuities for the scalar model problem (2.1) with first-ord
accuracy. The proof and results are similar to the error estimate of Glimm’s scheme for
homogeneous conservation laws [6].

First we consider the upwind method. Without loss of generality, we assufag > 0.
Consider the first-order upwind method for the convection, followed by the random pi
jection:

k
S (K): ul =ul - H(f (uh) = f(u]_y)), (2.15)
1 if ut¥ > 9
K): Ml ) oo 2.16
S0y {—1, if Ut < 6n. (2.16)

It is easy to see that the above method preserves the monotonicity property of the upy
method. Under the usual CFL condition, i.e., spif’(u})|k/h < 1, the above algorithm
is stable.
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First, at any time step, there is a(n) = jo, jo an integer, such that

1, if j <1,

n_ 2.17
y {—1, if j >1(n). (2.17)

Here we assume thap, the initial point of discontinuity, is a grid point; i.exp = | (0)h.
After the convection step (2.15), one has

1, if j <I(n),
w=<Su, =l (2.18)
-1, if j>I1(n)+1,

where
k 2k
1>M=H(f(1)—f(—l))—l:TS—lzZ/\—1>—1 (2.19)

with A = ks/h. In the second step, the random projection (2.16) gives

1, if | <Il(n), 1, if &> 6n,
uftt = . J " U1 = : e (2.20)
-1, if j >I(n)+1; -1, if u < 6.

Thus one has

[(n) + 1, if > 6n,
| 1) = 2.21
(n+1 {|<n>, it 1 < 6n. (.21)

Therefore the discontinuities in the approximate solution at each time step either move
grid point to the right or do not move. We now examine the accumulative effect over ma
time steps. In fact, from (2.21), noting (2.19), (2.12), and (2.11), one gets

(M) =10 +N{j=1,...,n;6; € [-1, )}
=10+ N{j=1,...,n9; €[0, (n+1)/2)}
=10 +N{j=1..., n; 9 € [0, A)}. (2.22)

Combining (2.22), (2.17), (2.4), (2.13), and (2.14) with= 0,n, = n, andl = [0, 1), we
obtain

X0+ St — (M| = |st, —hN{j =1,....n; & € [0, 1)}
= |st, — nh{x + §(33, 0, n, [0, 1))]|
= nh|3(®, 0,n, [0, 1))] < h(L+ 3(In(2t,/K)|)
= h[1 + 3|In(2st,/(Ah))]]. (2.23)

This gives the accuracy for the upwind method.
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Next we consider the Lax—Friedrichs method followed by random projection:

. k vak
Sk:  uf=u] - %(f (ulyg)) = F(ul ) + E(u?” —2uf +ul ), (2.24)
s K il 1, if uj > 6n, (2.25)
coouMtt = :
! —1, ifuf <6

In (2.24), the positive constanfa > | f’(u)| for all u. After the convection step (2.24),
one has
1, if j <I(n)—1,
, if j =1(n),
w={ (W (2.26)
U2, if j=1(n)+1,
-1, if j >1(n)+1,

where
K K
1>u1=ﬁ(s—\/a)+1>p,2=ﬁ(s+\/a)—1>—1. (2.27)

In the second step, the random projection (2.25) gives

u

n1_ {1, if j <1 -1, .28

! -1, ifj>Imn+1,

while

1, if 1 > 6n, 1, if o > 6,
Uity = _ ; Uity 1 = _ : (2.29)
1, if pg <6 1, if up <6h.

Thus one has
I(n) —1, if w1 <6,
l(n+1) = < 1(n), if u2 < 60n < pa, (2.30)
I(n)+1, if up > 6n.
Therefore the numerical shock, after each time step, could move to the left by one ¢
point, not move, or move to the right by one grid point. We now examine the accumulat

effect over many time steps, which should take into account the possibilities of both mov
forward and backward. By the definition bf in (2.12),

I =10 +N{j=21....m0 e[-Lud} = N{j =1,...,n;0; € (ug, 1]}

=I(0)+N{j =1,....mv € {o,“ﬁl}}

2

1
_N{jzl,...,n;ﬂj = [“1; 1]}

=IO +N{j=1....n0 [0, 2] —N{j =1,....n 9 € (A1, 1]}, (2.31)
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where); = %(,ul + 1) fori = 1, 2. Using the definition ofi1, w2 in (2.27), one obtains

[Xo + sty — I (Mh|
= |si;1—hN{j=1,...,n;z§‘j € [0, A2]} + hN{j :1,...,n;1§‘j € (A1, 1]}
= |st, — nh[A2 + 8(4, 0, n, [0, A2])] +nh[1 — A1 +8(3, 0, n, (A, 1]]|

= |snk— nk%(s+ Ja) — nk%(s— Ja) —nhs(¥, 0, n, [0, A2])

+nhs(®,0,n, (A1, 1])

< nhj5@,0,n, [0, A2])| +nhls(@, 0, n, (A1, 1])] < 2h(1+ 3[In(2t/K)])
= 2h(1 + 3|In(2st,/(xh))]. (2.32)
This is the accuracy estimate for the Lax—Friedrichs method.
The above analyses can be summarized by the following theorem:

THEOREM 2.1. Given T > 0, the difference between the shock location of the exac
solution Xg + st,, and the numerical oné (n)h, as determined by the random projection
method

U™t = S0k U,
where $(k) is the first-order upwind or Lax—Friedrichs method, has the estimate
[Xo + sty — I (n)h] < C(T)h|Inh|, (2.33)
for any n such that < t, < T and fixedh = sk/h, where QT) is a positive constant
depending orin(T)]|.

From this inequality, one can see that the error is first-o¢@&h|In h|)).

2.4. Numerical Examples

ExampLE 2.1. We solve (2.1) and (2.2) witli (u) = “—22 +u,a=0,¢=10"% and
Xo = 0.2 on the interval [0, 1] with 101 grid points using the random projection metho
(2.15)—(2.16). The mesh sibe= 0.01. For this example the speed of discontinuity

s tO-fCD _

1
2

Figure 1 shows the computed resultstat 0.2, 0.4, and 0.6 using different time steps
k = 0.004,0.001, and 0.0001. The numerical solutions indeed capture the shock propage
with the correct speed.

As a comparison, we use the explicit method

uim:uin_k(f(ui”);f(ui’ll))+§(n J1-(W)?). (234)
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t=10.2 t=04 t=0.6
a)
08 08 0.8
0.6 0.8 0.8
04 04 04
02 02 0.2
0 0 0
-02 -0.2 -02
-04 -04 -04
-0.6 -0.6 ~0.6!
-0.8 -0.8 -0.8!
-1 -1 -1
[ 02 04 08 0.8 1 0 02 04 06 08 1 0 02 04 06 08 1
b) ,
0.8 08 0.8
0.8 0.6 0.6
04 0.4 04
02 0.2 02
1] 0 0
-0.2 -0.2 -0.2
-0.4 -0.4 0.4
~-0.6] -0.6 0.8
-0.8] -0.8 -0.8]
1 -1 -
0 02 04 0.6 0.8 1 [} 0.2 04 0.6 0.8 1 L] 0.2 0.4 0.6 08 1
c) \
0.8 0.8 0.8
0.6 0.6] 0.6
04 0.4 04
0.2 0.2 02
[+ 0 [
-0.2 -0.2 -0.2
-0.4 -0.4 -0.4
-0.6 ~0.8 -0.6]
-0.8, -0.8] -0.8
-t -1 -1
o 0.2 0.4 0.6 08 1 0 0.2 04 0.6 0.8 t 0 02 04 0.6 2.8 1

FIG. 1. Numerical results using the random projection method for example 2:110-4, h = 0.01.—: True
solution;++: computed solutions. (& = 0.004; (b)k = 0.001; and (ck = 0.0001.

For this method, one has to chodse: ¢ for numerical stability, even i > ¢. Figure 2
shows the computed results for @@= 0.1 andk = 0.001; (b)e = 0.01 andk = 0.0001;
(c)e = 0.001 anck = 0.00001; and (d¥ = 0.0001 anck = 0.000001. In this example, the
correct locations of discontinuity at= 0.0, 0.2, 0.4, and 0.6 are at= 0.2, 0.4, 0.6, and
0.8 respectively. We observe that when the mesh resolves the reaction zone, as in cas
and (b), one can get the correct shock speed. In contrast, when the mesh does not re
the reaction zone, as in cases (c) and (d), one cannot get the correct solution even w
time step smaller than Instead the numerical shock speed is zero. This indicates that t
incorrect shock speed is induced by the spatial underresolution rather than the temporal

EXAMPLE 2.2. We solve (2.1) and (2.2) with(u) = é,a = 0,6 = 1074, andxg = 0.2
over the interval [0, 1] with 101 grid points. The mesh dize 0.01. For this example the
speed of discontinuity = (f (1) — f(—1))/2 = (e — e 1)/2whichis anirrational number.
Figure 3 shows the numerical solutiongtat 0.2, 0.4, and 0.6 using different time steps
k = 0.001, and 0.0001. In this example, the shock speed is correctly captured by the ran
projection method.
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1
0.5t 0.5}
02 t=06 os
t=0 t=0.4 t=0 t=0.2 t=0.4 N
0 0 1
'.
4
+
-0.5 -0.5 1
.‘
-1} -1 u
0o 02 04 08 08 6 02 04 06 08 1
C d
) 1MWIN’ ) 1JQWW
0.5+ 0.5
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-0.5} -0.5
-1 twmmmmmmmml«w -1 WWMMMWWT
0O 02 04 06 08 1 0 02 04 06 08 1

FIG. 2. Numerical results using the explicit method (2.34) for Example B.% 0.01. —: True solu-
tion; ++: computed solutions. (&) = 0.1, k = 0.001; (b)e = 0.01, k = 0.0001; (c)e = 0.001,k = 0.00001;
(d) e = 0.0001,k = 0.000001.

t=0.2 t=04 t=106
a)
0.8 08 08
06 0.6 08
0.4 0.4 04
02 02 02
0 ° [
-02 -02 -02
-04 -04 -04
-0.8 -0.8] -08
-0.8 -0 -08
-1 -1 -1 Lm
0 0.2 0.4 05 0.8 1 [ 02 04 06 0.8 1 [ 02 04 06 0.8 1
b)
0.8 08 0.8
06 06 0.6
0.4 04 04
02 02 02
0 [ 4
-0.2 -02 02
0.4 -04 -04
-0.6 -0:6 0.6
-0.8 -08 -0.8 L“
N -1 -1
[ 02 04 06 0.8 1 o 02 0.4 06 0.8 1 0 02 0.4 0.6 0.8 1

FIG. 3. Numerical results by using the random projection method for Example 222L0~4, h = 0.01. —:
True solution;++: computed solutions. (& = 0.001; (b)k = 0.0001.
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Figures 1 and 3 show that the random projection method can capture the correct sp
of the discontinuities for scalar hyperbolic conservation laws with stiff source terms ev
when the reaction scale is not resolved spatially or temporally. The location of the sh
may be off by a few grid points at each time step, but such a deviation never grows in ti
during our experiments to longer than that shown in the figures.

2.5. Hyperbolic Equations with the Ricatti Sources

The random projection method can be applied to numerical simulation of hyperbc
conservation laws with stiff, Ricatti sources:

ur + f(u)x = ;—Lu(l— u). (2.35)

Without loss of generality we start with the piecewise constant initial data

1 X < Xo,
u(x, 0) = up(x) = { (2.36)

0, X > Xo.

Heree is a small parametef, is a convex function ofi, i.e., f”(u) > 0, andxg is any given
point.

The Ricatti source in (2.35) admits two local equilibria, the unstableuoa® and the
stable onas =1 [20]. When the solution is at equilibrium, the Ricatti source has no effec
Thus the exact solution is a shock discontinuity connectiagl withu = 0 and propagating
to the right with a speed determined by the Rankine—Hugoniot jump condition:

5= f(1) - (0). (2.37)

Namely,

1, if x < st,
ux,t) = { =X+ (2.38)

0, if X > Xg -+ St.

The idea of the random projection method is to replace the unstable equilikorigng,
with the uniformly distributed random sequengge (0, 1), defined in (2.10). Let* =
S (ku" with S(k) being the discrete operator for the homogeneous equation (2.5) ove
time step. The random projection operaBris defined as

Sk uMtl= Lo =t an (2.39)
' o o, ifur <oy J: '
b J — 9

In this method, one random value &f will be selected per time step for all grid points.
Combining with the convection step, we get

Sp0: U™ =SS kU, (2.40)

We can also obtain a similar error estimate for the numerical shock speed for proble
with the Ricatti source.
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THEOREM 2.2. Given T > 0, the difference between the shock location in the exac
solution of the problen2.35),xo + St,, and the numerical oné (n)h, as determined by the
random projection metho@.40)in which S(K) is the first-order upwind or Lax—Friedrichs
method estimated as

X0 + St — I (N)h] < C(T)Hh|Inh|, (2.41)

forany0O <t, < T, and fixedr = sk/h, where QT) is a positive constant depending on
[IN(T)|.

From this inequality, one can see that the error is first of@h|In h|)).

Remark 2.2. When one considers the problem (2.35) with the Ricatti sourc
(1/e)u(l — u) replaced by(1/e)u(1 + u), our random projection method still works after
the sampling sequend is replaced by another sequertgze= 9, — 1, which is equidis-
tributed on the interval-1, 0].

3. TWO-DIMENSIONAL SCALAR PROBLEMS

The random projection method can be extended to two space dimensions in a strai
forward way. Consider the two-dimensional scalar hyperbolic conservation law with st
reaction term

1 1
U+ FWx gy =YW= -U-a)ld-u), -l<a<l, (3.1)
with piecewise constant initial data

1, (X, y) € Q2 CR?,

3.2
-1, (X, y) € R?\ Q. (3:2)

u(x,y, 0) = up(X, y) = {

Heree is the reaction timef andg are convex functions af, i.e., f”(u) > 0 andg”(u) > 0,
and€ is a given domain ifR?.

Letthe grid pointgxi, yj) = (ih, jh),i, j =..., =1,0,1,..., with equal mesh spacing
h. The time levels, =nk, k=0, 1,2, ..., are also uniformly spaced with time st&p
Let uﬂj be the approximate solution ef at (x;, y;, t,) = (ih, jh, nk). Similarly to the
one-dimensional scalar model problem, we use the fraction step method consisting of
convection step for

U + f(Ux +gu)y=0 (3.3)

followed by the reaction step

U = %(u —a)(1—ud). (3.4)

Let St g(k) be any high resolution shock capturing method for (3.3), anaflet S; g(k)u".
The random projection for the reaction is given by

1, if ui*j > 6,

for alli, j, 3.5
-1, if ui*j < 6n, : (35)

SK:  ujt= {
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where
en = 219[’] - 1,

with ¢, being the van der Corput sampling sequence on the interval [0, 1] defined in (2.1
Our fractional step method is then

U™t =5 (k) Sy g(k)u". (3.6)

The stability condition for this algorithm is the usual CFL condition determined by tf
convection part. The initial data are discretized as

_ 3.7)
-1, otherwise

o {1, (%, yj) = (ih, jh) € Q.

Now we will test algorithm (3.6) with two numerical examples. In our numerical comput:
tions in this section, the operat8r 4(k) is the first-order upwind scheme using dimensiona
splitting.

EXAMPLE 3.1. We solve (3.1) withf (u) = g(u) =u, « =0, ands = 1075. The initial
condition is

1, X+y<l

3.8
-1, X+y>1 (3.8)

ux,y,0) =uo(x,y) = {

This problem is solved on the domain [023}ith 101x 101 grid points using the 2D
random projection method (3.6). The mesh dize 0.01. Dirichlet boundary conditions
are used at inflow boundaries£ 0, andy = 0), and outflow boundary conditions are used
on the other two sides of the boundary. For this example the speed of the discontinuity is
bothx andy directions; see [10]. Figure 4 shows the computed results of the discontinu
front (i.e., contour ofu=0) att =0.2, 0.4, and 0.45 for time stefas=0.005 and 0.001

k =0.005 k =0.001
1 5 1 .
a) N N b) ‘\ N
N N, N N
N N, AN N
0.8 N N 0.8 \ .
N N
N N
0.6 N N 0.6 N N
N N
N N
0.4 h 0.4
=T e oo
T s T s
0.2} 0.2
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIG.4. Numerical results for Example 3.1 using the 2D random projection method4£3-61076, h = 0.01.
(a) k = 0.005; (b)k = 0.001.
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k =0.0025 k =0.001
a) ! b) 1
08— — == =~ _._\_\ 08F — = = —-= __‘\‘
.\.\ - N .
06f— ==~ N 0.6f ~ — =~ N
\\ A\ . \\ \
N y AN 3

0.4 0.4

0.2 0.2

0

: o :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIG. 5. Numerical results for Example 3.2 by using the 2D random projection method €3-6Y10°,
h = 0.005. (a)k = 0.0025; (b)k = 0.001.

respectively. At these times ttxe andy-coordinates of the exact solutions will be 0.4, 0.8,
and 0.9 respectively. The shock propagation was accurately captured.

ExAMPLE 3.2. Now consider the nonlinear convection with reaction
Up + (U2/2)x + (U?/2)y = 1CPu(l — u)(u — 1/2), (3.9)
with initial condition

1, x?+y?<0.16,

3.10
0, x?’4y?>0.16 (3.10)

u(x,y, O) = Up(X,y) = {

This problem is interesting because of the nonlinear flux functions and the curved sh
front. The equilibria are different from those of (3.1), so we have to use the van der Cor
sampling sequence® =,. We solve this problem on the domain [023Jith 201 x
201 grid points using the 2D random projection method (3.6). So the mesh sif005.
Homogeneous Neumann boundary conditions are used at the inflow boungati@safd

y = 0), while outflow boundary conditions are imposed on the other sides of the boundze
For this example the shock front moves with speed 0.5 along the axes [10]. Figure 5 sh
the computed results of the discontinuity front (i.e. contoun ef0.5) att = 0.4, 0.8, and
1.0 for time step& = 0.0025 and 0.001 respectively. At these times the exact solutions ha
the x- andy-coordinates 0.6, 0.8, and 0.9 respectively. The numerical solutions give gc
approximate shock locations at these times.

4. ONE-DIMENSIONAL DETONATION WAVES

In this section, we introduce the random projection method for the computation of or
dimensional stiff detonation waves. The key idea isrtake the ignition temperature
random.

Consider the Euler equations that model the time-dependent flow of an inviscid, cc
pressible, reactive gas in one space dimension. Without heat conduction and viscosity
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equations take the form

1
U + F(U)ng\IJ(U), (4.1)
o m 0 0
2
u=|"™| Fuy=| ™PTP | yu= 0 _|[ O
e m(e+ p)/p 0 0
pz . —pze T ¥ ()

The dependent variablggx, t), m(x, t), e(x, t), andz(x, t) are the density, momentum,
total energy, and fraction of unreacted fluid, respectively. The pressure is given by

m2
p=(y — 1)<e— > quZ>
0
and the temperature is definedas- p/p. Letu=m/p be the velocity. The parameters
0o, To, ¥, ande correspond to chemical heat release, ignition temperatyre c, ratio,
and reaction time.
We will focus on the discontinuous solutions of detonation waves. For these waves
viscosity is not as important as for the slower deflagration wave solutions.
Equations (4.1) are referred to the reactive Euler equations with Arrhenius kinetics |
We will also consider (4.1) with

_}pze_TO/T
&

replaced by the Heaviside kinetics
1
——pzH(T — To),
&

whereH (x) =1 for x > 0, andH (x) =0 for x < 0. Actually the stiffness issue with the
Heaviside kinetics is more severe [11].

Now we will describe the random projection method for solving the problem (4.1) wi
piecewise constant initial data

(o1, Ui, pr, 0), if X < Xo,
(p(x,0),u(x, 0), p(x, 0), z(x, 0)) = . 4.2)
(pr, Ur, pr. D), if X > Xo,

where xg is a given point. For simplicity these data are chosen so that the detonat
moves to the right. The case where the detonation moves to the left can be dealt
similarly. LetUjn = (,ojf‘, mrj‘, e‘]1 (,oz)'j‘) be the approximate solution bf=(p, m, e, p2) at

(Xj, t) = (jh, nk). As with the scalar model problem, a fractional step method is used.

the first step, the inviscid compressible Euler equations,

are solved using a standard shock capturing metBagd). Since any shock capturing
method will have a few grid points in the shock profile, the corresponding temperatt
values, once above the critical temperatligemay trigger a too early chemical reaction,
causing non-physical waves [1, 7].
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4.1. Random Projection Methods for the Reaction Term

In the second step of the fractional step method, we solve the chemical reaction terr

1
pr =0, m; =0, g =0, (pZ)tngU), (4.4)

using the random projection method. Here the ignition temperdigiie made random.
This can be successful since the speed of the front does not depend on the specific val
To, as long as it is in the range between the left and right statedJtet S (k)U". Our
first choice for the random projection operatris defined as follows. Let

Oh= M =T+ T, T =mp/o, T = pe/or,

with 9, (see (2.10) for detail) being the van der Corput sampling sequence on the inter
[0, 1]. For all j,

M pft=pf,  mitt=mj =g
g |0 T =6 (4.5)
' 1L T <6

This operator will be referred to ggobal random projection, since the projection operator
S (K) is used for all grid points.
The combination of the two steps gives the fractional step method as

Sk UM =5k S (kU (4.6)

Since the reaction zone is local, it makes more sense to do the random projection arc
the reaction zone. In fact, the global projection could produce incorrect solutions when
intermediate stat&;, behind the detonation (thus corresponding te 0, namely the burnt
state) emerges betwednandT,. Since the random numbers are chosen over the interv
[T, T}, and if T, > T, the global random projection treats the stat@gts burnt and the
results will be corrected. However,lif < T, < T,, then once arandom number is abdyge
the state off , will be treated as an unburnt state and chemical reaction will take place in tf
state, which yields the wrong solution. This will be shown by Example 4.4 in this sectio

We can avoid the problem of global random projection by the follovitmgl random
projection method, which performs the random projection only near the detonation fron
This guarantees that a state, once burnt, remains burnt. The location of the front cal
easily determined from the value nf

First notice that, although may have some intermediate values between 0 and 1 aft
the convection step, the projection step always malather 0 or 1. Therefore, at any time
stepty, there is al(n) = jg, jo an integer, such that

47311 i >,

. {o, if j <1(n),

Herel (n) is the location of the jump for numerical solutionoih the approximate solution
at timet,. Since the projection operator will make the detonation move at most a few g
points, the new location of the detonation front is only a few grids away from that of tt
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previous time step. Thus one need only to check the valdeaifseveral points ne&n)
for the value of (n + 1). Therefore, (4.5) can be replaced with the local projection arour
the front

St pft=p  mt=m, @t=g
Setl(n+1) :=1(n) — 1, @.7)
Forl =1(n)—L1I(n),....I()+d do:l(n+1) =1, if T*> 6p;

z

nt_ {o, if j <I(n+1), 4.8

J 1, if j >1l(n+1);
End if

whered is the number of smeared points in the shock layer. From our numerical experier
for Chapman-Jouguet (C—-J) detonations and strong detonatieng,works very well. In
the above algorithm, onlg + 2 points will be scanned.

The fractional step method based on this local projection is

Sk): U™ =5 K S (kU (4.9)

For numerical comparison, we also describe dleterministic method, in which one
always uses the given deterministic ignition temperafyrtn the case of Heaviside kinetics,
an implicit method for (4.4) gives

St:  pft=pl mt=mi g =¢
(o2t = { LT f7<T 419
p2))t = _
J (b2 /L +Kfe), i TS T,

Sincepzdecreases whéhbecomes larger thaly, one getsthe same result iftheti“éj’étrl >
To is replaced byT > To [11], thereby making it unnecessary to solve any nonlinea
equations. Then the corresponding algorithm is

SKk): U™ = SRS (U, (4.11)
where

Sto:  pift=p;, mt=m;, =g,
(p2)]t = {

(p2)], if T < To,
(p2)}/ (1 +K/e), if T > To.

The stability condition for all three algorithms is the usual CFL condition determined |

the convection terms.

(4.12)

4.2. Numerical Results for Detonation Wave Problems

Now we will test the above three algorithn$s, S, and S by a variety of numerical
examples, including the C-J detonation and strong detonations. In our computations
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always use the Heaviside kinetics. Among the numerical examples in this and the r
sections, the convection step is solved using the second-order TVD relaxed scheme |
which is free of any Riemann solver and local characteristic decomposition. We cho
d =5in (4.7)—(4.8) in our computations in this subsection.

ExampLE 4.1 (A Chapman—Jouguet (C-J) Detonation). We consider the case of 0z
decomposition C—J detonation discussed and computed in [1, 7]. We use the CGS units
the following parameter values:

1
y =14, qo=05196x 10'°, ==K =0.5825x 10'°, Ty =0.1155x 10'°.
&

The initial data are piecewise constants defining a C—J detonation as a single wave (re
that in the Chapman—-Jouguet model a C—J detonation corresponds to a sonic deton
or, in other words, a sharp reaction wave that moves at the minimal speed relative to
unburnt gas; see [8] for more details), given by

(00, Uo, Po, 1), if X > 0.005,

(p7 u’ p’ Z) = .
{(PCJ, Ucy, Pcs, 0), if x <0.005

where Po = 8.321x 1(?, po = 1.201 x 103, Up =0, and Pcs= 6.270 x 106, pPcI=

1.945x 1073, ucy = 4.162x 10%. In fact, for any given initial statep, U, po, 1) on

the right, one can obtain the C-J initial state on the left by [5, 8]

Pcy= —b + (bz — C)l/z, (413)
+1)—
ey = polpcaly +1) p0]7 (4.14)
Y Pca
Dcy = [polo + (¥ Pearcd) %] / po. (4.15)
Ucy = Dcy— (ypey/pcy?, (4.16)

whereb = —py — poto(y — 1), ¢ = p§ + 2(y — 1) popoto/(y + 1), andDc; is the speed
of the sharp front (in a C—J detonation).

Observe that the valug®:;, pocj, anducy depend only orpg, Ug, o, andgy (and not on
K,i.e.,e or Tp). The speed of the sharp front in Example 4.Dig = 1.088 x 1. In this
example the width of the reaction zone is approximately B0~°. See [1, 7].

This problem is solved on the interval [0, 0.05]. The “exact” solutions are obtaine
by using the deterministic method (4.11) and choosing 5 x 10°° (i.e., 10,001 grid
points on the interval [0, 0.05]) ankl=5 x 10~*2. This mesh size and time step re-
solve the reaction scale. Now we compare the results obtained by the random projec
methods and the deterministic method when the reaction zone is underresolved. The :
tions are displayed @ =5 x 1078, t, =1 x 10~7, andtz = 2 x 1077 in Figs. 6-8. The
grid sizeh =5 x 107 (i.e., 101 grid points for the interval [0, 0.05]) for all numerical
experiments.

Figure 6 shows the results of the global random projection method (4.6kwith x
10719 Fig. 7 shows the results of the deterministic method (4.11) with the same time s
k = 5 x 10710, and Fig. 8 shows the results of the deterministic method (4.11) with a mu
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FIG.6. Numerical results for a C-J detonation in Example 4.1 by using the global random projection mett

(4.6).h =5 x 10%, k = 5 x 1071%. —: Exact solutionsi+: computed solutions. (a) Temperatdre(b) pressure
p; (c) densityp; and (d)z.

smaller time stefix = 5 x 1072, (In this case the time step resolves the reaction time bt
the spatial discretization does not resolve the reaction zone.)

In Fig. 6, the global random projection method captures the correct speed of the C-J
onation with underresolved spatial and time discretizations. There are some mild statis
fluctuations behind the detonation, which is the nature of a random method. Figures 7
8 show that, when the reaction zone is underresolved spatially, no matter how small
time step is, one cannot obtain the correct speed of the discontinuity by using the explic
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Numerical results for Example 4.1 by using the deterministic method (4nl4)5 x 1074, k =

5 x 107%°. —: Exact solutions}-+: computed solutions. (a) Temperatdrg(b) pressurep; (c) densityp; and (d)z.

implicit deterministic method for the chemical terms. A spurious weak detonation appe
ahead of the detonation wave. This seems to suggest that the stiffness problem is due t
spatial rather than the temporal underresolution.

ExAMPLE 4.2 (A Strong Detonation).

(p,u,p,2) =

(00, Ug, Po, D),
(o1, U, i, 0),

The initial data in this example are

if x > 0.005
if x < 0.005
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FIG. 8. Numerical results for Example 4.1 by using the deterministic method (4H8.5 x 1074,
k =5 x 107*2, —: Exact solutions;++: computed solutions. (a) Temperatdre (b) pressurep; (c) densityp;
and (d)z.

whereu; = 9.162x 10* > ucy, pi = pcy, P = Pcy, and po, Uo, Po, Pca, Ucy, pca, and all
the other parameters (i.¢, qo, K, andTp) are the same as those in Example 4.1. The
exact solution consists of a right-moving strong detonation [5], a right-moving conte
discontinuity, and a stationary shock.

The “exact” solution is obtained similarly to that in Example 4.1. Figures 9 and 1
show the numerical solutions by the local random projection method and the determini
method respectively. The local random projection method can capture the correct spee
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FIG.9. Numerical results for Example 4.2 by using the local random projection methodt49%. x 104,

k =5 x 107%, —: Exact solutionsi-+: computed solutions. (a) Temperatdre (b) pressurep; (c) densityp;
and (d)z.

the discontinuity of the strong detonation wave, among other waves, although the reac

zone is not resolved spatially or temporally. However, the deterministic method produ
spurious waves.

ExampLE 4.3 (Another Strong Detonation). The initial data are

(0o, Uo, Po, 1), if x > 0.005,

7ua 7Z = .
(1. 0.2 (o1, Ui, pi, 0), if x < 0.005,
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FIG. 10. Numerical results for Example 4.2 by using the deterministic method (4h1%)5 x 1074, k =

5 x 107%°, —: Exact solutions;++: computed solutions. (a) Temperatufe (b) pressurep; (c) densityp; and
(d) z

whereu; = 9.162 x 10* > ucy, o = pcy, P = 8.27 x 10° > pcy, andpo, Ug, po, Pca, U
pcy, and all other parameters are the same as those in Example 4.1. The wave patte
this example is the same as that in Example 4.2. The exact solution is obtained like
in Example 4.1. Figures 11 and 12 show the numerical solutions obtained by the Ic
random projection method and the deterministic method, respectively. The local ranc
projection method captures the propagation of all waves, while the deterministic mett
gives a spurious weak detonation.
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FIG. 11.

Numerical results for Example 4.3 by using the local random projection methodt{4=9%. x 10-*,

k =5 x 107%, —: Exact solutionsi+: computed solutions. (a) Temperatdre (b) pressurep; (c) densityp;

and (d)z.

EXAMPLE 4.4. The initial data are

if x > 0.005,
if x < 0.005

(00, Ug, Po, D),

(p?u’ 72):
P (o1, ur, pi, 0),

whereu; = Ucy, pi = pcy, and pr = 8.27 x 10° > pcy while po, Uo, po, Pca Uca pca,
and other parameters are the same as those in Example 4.1. The solution consists
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FIG. 12. Numerical results for Example 4.3 by using the deterministic method (4h1%)5 x 1074, k =
5 x 107%°, —: Exact solutions;++: computed solutions. (a) Temperatufe (b) pressurep; (c) densityp; and

() z

right-moving strong detonation wave, a right-moving contact discontinuity, and a le
moving rarefaction wave. The exact solution is obtained that in Example 4.1. We te
h=5x10"* andk =5 x 1071° and output the solutions at tinte=5x 1078, t, =1 x

107, andtz =2 x 10°7.

Figure 13 shows the numerical solutions using the local random projection method (4
which captures all wave propagations. Figure 14 shows those by the deterministic me

(4.11), which produced a spurious weak detonation.
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and (d)z.

We also computed the solution with the global random projection method and dey
the numerical solutions in Fig. 15. The solution is essentially wrong, due to the improyf
projection away from the detonation front. Here the temperaffizepf the equilibrium
state just behind the detonation front is less thaThe global random projection method
triggers the location of the right-moving contact discontinuity rather than the location
the detonation front in the time steps whgp < 6, < T,. This causes the wrong numerical
solutions. In summary, the local random projection method can capture the correct spe
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of both C—J and strong detonations in all the examples presented here, when the nume
discretization does not resolve the reaction scale. The global random projection algori
(4.6) produces similar results for the first three examples; however, it fails to produce g
approximate solutions in Example 4.4.

In practice, we recommend using the local random projection method (4.9) because
more efficient and works well for all the cases we have considered.
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and (d)z.
5. TWO-DIMENSIONAL DETONATION WAVES
Now we extend the local random projection method to the computation of two-dimensic

detonation waves. The equations are

Ut+F(U)x+G(U)y=:gL\II(U), (5.1)
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0 pu oV 0
ou pu?+p puv 0
U=1|pv], FU)= puv , GUU) = ,ov2+|0 , W) = 0
e (e+ p)u (e+ p)u 0
pz puz pvz v(U)

The dependent variablggx, y, t), u(x, y, t), v(X, y, t), e(x, y, t), andz(x, y, t) are the
density,x- andy-velocities, energy, and fraction of unreacted fluid, respectively. The pre
sure is given by

U2 + 2
p=(y—1)<e—p 5 —CI0,02>

and the temperature is definedlas= p/p. The parameternyg, To, y, and V¢ are the same
as those in one-dimensional detonation waves.

For simplicity, we consider the detonation waves in a two-dimensional channel. With
loss of generality, the initial data are

(p(x7 y’ O)’ u(x’ y7 0)7 U(X7 y’ 0)7 p(X7 y’ 0)’ Z(X7 y’ 0))

_ ), u,0,p.0), if X = &(Y), (5.2)
(/Or, Ura O’ pra 1)7 If X > S(Y),

whereé (y) is a given function ofy. Let U} = (o}, pij Ui}, o} vj} . €]}, (02)]}) be the ap-
proximate solution ol at (x;, yj, t,) = (ih, jh, nk). As in the one-dimensional case, the
fractional step method is used. In the first step, the inviscid compressible Eu
equations

U+ FU)x+GU)y =0 (5.3)

are solved by a high-resolution shock capturing metBed (k). In the second step, the
chemical reaction term

1
pr =0, my =0, n =0, & =0, (P2t = EW(U) (5.4)

is solved using the local random projection method.
At any time step, for each, there is anj(n) = jn, j, an integer, such that

N {O, ifi <1j(m),
1, if i > 1j(n).

Herel; (n) is the location of the jump for the numerical solutioreait the grid liney = y;

and at timet,. Since after each time step, the front movesdyrid points,|;(n 4 1) is at
mostd grid points away fronh; (n). Thus one need only chedkpoints neat; (n). Assume
that after the convection stép* = S g(k)U", for eachj, the front at timd,,; is located
atl;(n+ 1), which can be easily determined from the value.ofhen the following local
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projection around the front is used in the second step:

& . n+1 _ % n+1 _ % n+1 __ % n+1 _
S (K): Pij = Pij» mj = =mj, N~ =nj, & =6
For j do

Setl,—(n+1) ::I,—(n)—l,
Forl =1j(n) =1, Ij(n),...,lj(n)+d do:lj(n+1) =1,

0, ifi <lj(n+1),
1, if i >1j(n+1).

n+1 _

4j
Then the corresponding algorithm is

U™ = § K Sa kU™
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FIG. 16. Numerical results of density for Example 5.1 using the 2D local random projection méthed.

5x 105 k=5x 101
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The stability condition for this algorithm is still the usual CFL condition determined fror
the convection term.

Now we will test algorithm (5.7) with a numerical example. We chombse 1 in (5.5)—
(5.6) for the following example since the detonation is strong.

ExaMPLE 5.1 (A Two-Dimensional Detonation Wave). We consider the problem (5.
in a two-dimensional channel, where the upper and lower boundaries are solid walls.
choose the samg, qo, &, and Ty as in Example 4.1. The initial data in (5.2) are= po,

Uy = Uo, Pr = Po, o = pca Ui = 8.162x 10% > ucy, andpr = peywith pr, Uy, pr, pea, Uca,
and pc; given in Example 4.1.

One important feature of this solution is that the triple points travel in the transver
direction and bounce back and forth against the upper and lower walls, forming a celll
pattern [19].

This problem is solved on [@.025] x [0, 0.005] with a 501x 101 mesh, and

£(y) — {0004 ly — 0.0025 > 0.001,
¥)=10005— |y — 00025 |y—0.0025 < 0.001

Thus the mesh size = 5 x 107°. The time step i& = 5 x 1071,

Figure 16 shows the evolution of density contours in time. One can see that the
cal projection method produces the desired profile for the triple points. In contrast,
triple points, obtained by the usual deterministic method [11] cease to move after sc
time.

6. CONCLUSIONS

We propose a random projection method for numerical simulation of the hyperbo
conservation laws with stiff source terms arising from chemically reactive flows. Our meth
consists of two typical steps: solving the homogeneous hyperbolic conservation law t
standard modern shock capturing method and using a project method for the stiff reac
term. Inthe reaction step, we replace the deterministic ignition temperature with a uniforr
distributed random variable in a suitable domain. This random projection method captt
the propagation of the detonation waves with the correct speed when the reaction scale |
numerically resolved. For model scalar conservation laws with a stiff source term, we pr
that this method, when the van der Corput sampling sequence is used, captures the cc
shock speed with first-order accuracy. Extensive numerical examples for one- and t
dimensional scalar problems and one- and two-dimensional detonation waves demons
the effectiveness of this novel method.

In the future we will conduct more numerical experiments to validate the applicability
this new method. To conclude, we quote a remark by Chorin [4]: A certain randomness
property of many real flows, and thus a method which exhibits randomness is not necess
less desirable than a method which yields fully predictable answers.

ACKNOWLEDGMENT

We thank the referee for valuable suggestions on improving the presentation of the paper.



248 BAO AND JIN

N

~N o 0o b

[ee]

REFERENCES

. M. Ben-Artzi, The generalized Riemann problem for reactive fldw§omput. Phys81, 70 (1989).

. A. C. Berkenbosch, E. F. Kaasschieter, and R. Klein, Detonation capturing for stiff combustion chemis
Combust. Theory Mode?, 313 (1998).

. A. Bourlioux, A. Majda, and C. Roytburd, Theoretical and numerical structure for unstable one-dimensio
detonationsSIAM J. Appl. Math51, 303 (1991).

. A. J. Chorin, Random choice solution of hyperbolic system€omput. Phy2, 517 (1976).
. A.J. Chorin, Random choice methods with applications to reacting gaslfleemput. Phy5, 253 (1977).
. P. Colella, Glimm’s method for gas dynami&AM J. Sci. Stat. CompL&, 76 (1982).

. P. Colella, A. Majda, and V. Roytburd, Theoretical and numerical structure for reacting shock $Mds,
J. Sci. Stat. Comput, 1059 (1986).

. R. Courant and K. O. FriedrichSupersonic flow and Shock Wayegerscience, New York, 1971).

9. T. Elperin and O. Igra, About the choice of uniformly distributed sequences to be used in the random ch

10.

11.

12.

13.

14.
15.

16.

17.
18.

19.
20.

method,Comput. Methods Appl. Mech. Er&y, 181 (1986).

B. Engquist and B. Sjogreen, Numerical approximation of hyperbolic conservation laws with stiff terms,
Proc. Third Int. Conf. on Hyperbolic Problen{Studentlitteratur, Lund, 1991), p. 848.

B. Engquist and B. SjogreeRpbust Difference Approximations of Stiff Inviscid Detonation WaRad/
Report 91-03 (UCLA, 1991).

H. Fan, S. Jin, and Z. H. Teng, Zero reaction limit for hyperbolic conservation laws with source tern
J. Differential Equationsto appear.

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equaGamsmun. Pure Appl. Math.
18, 697 (1965).

J. M. Hammersley and D. C. Handscoritgnte Carlo Method¢éMethuen, London, 1965).

S.Jin and Z. P. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimens
Commun. Pure Appl. Matid8, 235 (1995).

R. J. LeVeque and H. C. Yee, A study of numerical methods for hyperbolic conservation laws with stiff sou
terms,J. Comput. Phys86, 187 (1990).

A. Majda, A qualitative model for dynamic combusti®&AM J. Appl. Math41, 70 (1981).

R. B. Pember, Numerical methods for hyperbolic conservation laws with stiff relaxation. I. Spurious solutio
SIAM J. Appl. Math53, 1293 (1993).

R. A. Strehlow, The nature of traverse waves in detonafistronaut. Actal4, 539 (1969).

H. C. Yee and P. K. Swebionlinear Dynamics & Numerical Uncertainties in CFNASA TM 110398,
1998.



	1. INTRODUCTION
	2. ONE-DIMENSIONAL SCALAR PROBLEMS
	FIG. 1.
	FIG. 2.
	FIG. 3.

	3. TWO-DIMENSIONAL SCALAR PROBLEMS
	FIG. 4.
	FIG. 5.

	4. ONE-DIMENSIONAL DETONATION WAVES
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.

	5. TWO-DIMENSIONAL DETONATION WAVES
	FIG. 16.

	6. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

