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We propose a random projection method for numerical simulations of hyperbolic
conservation laws with stiff source terms arising from chemically reactive flows:

Ut + F(U )x + G(U )y = 1

ε
9(U ).

In this problem, the chemical time scales may be orders of magnitude faster than the
fluid dynamical time scales, making the problem numerically stiff. A classic spurious
numerical phenomenon, the incorrect propagation speeds of discontinuities, occurs
in underresolved numerical solutions. We introduce a random projection method for
the reaction term by replacing the ignition temperature with a uniformly distributed
random variable. The statistical average of this method corrects the spurious shock
speed, as will be proved with a scalar model problem and demonstrated by a wide
range of numerical examples in inviscid detonation waves in both one and two space
dimensions. c© 2000 Academic Press

1. INTRODUCTION

Hyperbolic systems with stiff source terms arise, among many other applications, in
the modeling of chemically reactive flows. Restricting our attention to inviscid flows, we
describe the underlying physical equations by the compressible Euler equations of gas
dynamics, coupled with source terms representing the chemical reaction. In two space
dimensions these equations take the form

Ut + F(U )x + G(U )y = 1

ε
9(U ), (1.1)
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whereU is the vector of dependent variables with components mass, momentum, total
energy, and density or concentration for each species in the reacting mixture. The flux
functionsF(U ) andG(U ) describe the fluid dynamical convection, while the source term
9(U ) arises from the chemistry of the reacting species.ε is the reaction time.

The kinetics equations often include reactions with widely varying time scales. Moreover,
many of the chemical time scales may be orders of magnitude faster than the fluid dynamical
time scales. This can lead to problems of numerical stiffness. Even a stable (for example, with
an implicit source) scheme could lead to spurious numerical propagation speed when the
reaction time scale is not properly resolved numerically. This phenomenon was first observed
by Colellaet al. [7], who made a study of the limiting behavior with increasing stiffness
for various model systems. In particular, they looked at the Euler equations coupled with a
single chemical variable representing the mass fraction of unburnt gas in a detonation wave.
These waves have the structure of a fluid dynamic shock that raises the pressure to some
peak value, followed immediately by a reaction zone that brings the pressure back down to
a new equilibrium value. On coarse grids it is not possible to resolve this combustion spike
and the best one can hope for is a single discontinuity linking the two equilibrium values and
moving at the correct speed. They obtained the correct combustion spike and correct speed
of discontinuities only with very fine grids; i.e., the reaction zone was completely resolved
(at least 30 grid points in the reaction zone). In contrast, they observed that on coarse grids
(i.e., when the reaction zone was not resolved) the numerical solutions were qualitatively
incorrect. The computed solution consisted of a weak detonation wave, in which all the
chemical energy was released, followed by fluid dynamic shock traveling more slowly. The
numerical reaction wave always traveled much faster than the physical one, and the speed
becomes one grid point per time step when the ratio of the time step over the reaction time is
very large. Ben-Artzi [1] observed the same phenomenon in solving reactive flows using the
solution of the generalized Riemann problem. Using scalar models, LeVeque and Yee [16]
studied this spurious numerical phenomenon. They showed that this phenomenon is due to
the introduction of nonequilibrium values through numerical dissipation in the advection
step, which triggers the reaction too early. See also [18].

Since the numerical viscosity is the cause of the incorrect speed, a natural idea is to avoid
any numerical viscosity. In [5] Chorin introduced the random choice method for reacting
flows, which originated from the classical Glimm scheme [13] for hyperbolic systems. Since
the random choice method does not introduce numerical viscosity, no spurious waves will
occur. In [11], Engquist and Sjogreen proposed a temperature extrapolation method, which
uses the extrapolated temperature value from outside the shock profile, and obtained the
correct detonation speed.

Since numerical viscosity is an essential feature for modern high-resolution shock-
capturing methods, it is highly desirable to develop methods for reacting flows that, instead
of avoiding the numerical viscosity, make correct use of it. The random projection method
proposed here is such a method. Our method consists of the typical two steps: solving the
homogeneous hyperbolic conservation laws by a standard modern shock-capturing method
and then performing a projection step for the stiff reaction term. In the underresolved
regimes, where the numerical time step is much greater than the reacting time, all ODE
solvers for the reaction term essentially reduce to a projection operator (which will be called
thedeterministic projection in this paper), which projects the chemically nonequilibrium
data into the equilibrium ones according to the value of the temperature relative to the igni-
tion temperature. It is this projection that causes the incorrect speed because the numerically
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smeared nonequilibrium temperature, once above the ignition temperature, will trigger the
chemical reaction too early, forcing the front to move. Unless the ignition temperature is
suffciently high this will always happen [2, 18]. This is purely a grid effect. Since there
is no correlation between the numerical shock location and the grid, a natural and robust
way to handle this numerical difficulty is through a random method. Our idea is, in the
projection step, toreplace the ignition temperature with uniformly distributed random
variable, defined in a suitable domain. Upon a suitable choice of the sampling sequence,
at each time step, the front either moves one grid point or does not move, but the statistical
average yields the correct speed!

For model scalar conservation laws with stiff source terms, we prove that the first-order
random projection method can indeed capture the correct speed of discontinuity (i.e., obtain
the correct jumps in the correct locations) with first-order accuracy.

The random projection method clearly differs from the random choice method of Chorin
[5]. The random choice method is a Godunov type method that uses the Riemann or even
the generalized Riemann (for hyperbolic systems with source terms) solver. The random
projection method uses the randomness only for the reaction term, while in the convection
step, any modern shock capturing methods, including the efficient methods free of Riemann
solvers and local characteristic decompositions, can be used.

The paper is organized as follows. In Section 2 we first introduce the random projection
method for a scalar model problem. We prove that this method, when the first order upwind
or Lax–Friedrichs method is used for the nonlinear convection, yields the correct shock
speed with an error ofO(h|ln h|), whereh is the grid size. We also present numerical
examples for this scalar model. Furthermore, we apply this method to problems with the stiff
Ricatti source. In Section 3 we extend this method to the computation of two-dimensional
scalar hyperbolic conservation laws with stiff source terms. Numerical results show that the
random projection method yields the correct speed of reaction front. In Section 4 we extend
this method to the computation of one-dimensional detonation waves. Numerical examples
for a variety of detonation waves are presented. In Section 5 we extend this method to the
computation of two-dimensional detonation waves. In Section 6 we draw some conclusions.

2. ONE-DIMENSIONAL SCALAR PROBLEMS

We first introduce the random projection method for a model problem, studied in [12, 16].
Consider the hyperbolic conservation law with stiff source term

ut + f (u)x = 1

ε
(u− α)(1− u2), −1< α < 1, (2.1)

with piecewise constant initial data

u(x, 0) = u0(x) =
{

1, x ≤ x0,

−1, x > x0.
(2.2)

Hereε is the reaction time;f is a convex function ofu, i.e., f ′′(u) > 0; andx0 is a given
point.

The source term in (2.1) admits three local equilibria, the unstable oneu = α and the
stable onesu = ±1. When the solution is at equilibrium, the reaction term has no effect. Thus
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the exact solution is a shock discontinuity connectingu = 1 with u = −1 and propagating
to the right with a speed determined by the Rankine–Hugoniot jump condition

s= 1

2
[ f (1)− f (−1)]. (2.3)

Namely,

u(x, t) =
{

1, if x ≤ x0+ st,

−1, if x > x0+ st.
(2.4)

Note that the speed does not depend on the specific value ofα. This is the key to the success
of the random projection method, which we introduce next.

Let h be the grid size and letk be the time step. The numerical solution is evaluated
at the points (ih, nk), i = 0,±1,±2, . . . , n = 0, 1, 2, . . .. Let un

i approximateu(ih, nk)
and letun be the solution vector ofu(·, nk) at time tn = nk. When the reaction term is
resolved, i.e.,k = O(h)¿ ε, any method that works well for the homogeneous hyperbolic
conservation law still works well here. Here we are interested in the underresolved case,
wherek = O(h) ≥ ε.

A standard numerical method, which allows an underresolved discretization, is the frac-
tional step method that solves the homogeneous convection

ut + f (u)x = 0 (2.5)

followed by the reaction step

ut = 1

ε
(u− α)(1− u2). (2.6)

Let Sc(k) denote the discrete operator for the homogeneous system (2.5) over a time step
of durationk, and letSr(k) be the numerical integrator for the ODE system (2.6). Then the
fraction step method takes the form

un+1 = Sr(k) Sc(k) un. (2.7)

One may use any high-resolution shock capturing method forSc(k). Let u∗ = Sc(k)un.
WhenkÀ ε, the solution of the ODE (2.6) approaches the equilibrium states±1 exponen-
tially fast. Whether it approaches 1 or−1 depends on whetheru is bigger or smaller than
α [12]. ThusSr(k) becomes effectively thedeterministic projection operator:

Sr(k): un+1
j = 1, if u∗j > α

−1, if u∗j ≤ α
, for all j . (2.8)

This standard method was studied in [16], where it was found that, ifkÀ ε, the numerical
shock moves one grid point per time step. This is the case when the smeared valueu∗ is
above the critical valueα, which will be projected into 1 by the projection step, forcing
the shock to advance one grid point. If the smeared valueu∗ is belowα, u will always be
projected to−1, and then the shock will not move at all. Whetheru∗ is greater or less than
α depends on the CFL number.
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2.1. The Random Projection Method

The idea of the random projection method is to replace the unstable equilibrium, or
the critical value,α, with a uniformly distributed random sequenceθn ∈ (−1, 1). Letu∗ =
Sc(k)un. We replaceSr by Sθ , where

Sθ (k): un+1
j =

{
1, if u∗j > θn

−1, if u∗j ≤ θn

}
, for all j . (2.9)

In this method, one random value of{θn | n = 0, 1, 2, . . .}will be selected per time step for
all grid points.

This idea is based on the observation that there is no correlation between the center of
the shock and the grid. One hopes that the statistical average will automatically correct the
wrong speed.

2.2. The Choice of the Random Sequenceθn

In [9], several sampling schemes were proposed and compared for the random choice
method of Chorin [4, 5]. Here and in our practical computations, we always use van der
Corput’s sampling scheme. The merit of this scheme is that it produces an equidistributed
sequence on the interval [0, 1], and among all known uniformly distributed sequences the
deviation of van der Corput’s sequence is minimal [14]. The detailed scheme is the following.
Let 1≤ n =∑m

k=0 i k2k, i k = 0, 1, be the binary expansion of the integern. Then the van
der Corput sequence, with range in [0, 1], is given by

ϑn =
m∑

k=0

i k2−(k+1), n = 1, 2, . . . . (2.10)

We rescale it in order to get a sequenceθn on [−1, 1]:

θn = 2ϑn − 1, n = 1, 2, . . . . (2.11)

In order to get the error estimate of our random projection method based on the van
der Corput sequence, we recall some properties of the van der Corput sampling sequence
{ϑn, n = 1, 2, . . .} [14]. It is rather illuminating to list its first few elements:

ϑ1 = 1

2
, ϑ2 = 1

4
, ϑ3 = 3

4
, ϑ4 = 1

8
,

ϑ5 = 5

8
, ϑ6 = 3

8
, ϑ7 = 7

8
, ϑ8 = 1

16
,

One can see that

ϑ1 = 1

2
, ϑn =

{
< 1

2, if n is even,

> 1
2, if n > 1 is odd.

In general, if one divides the unit interval into the subintervals(r 2−s, (r + 1)2−s), r =
0, 1, . . . ,2s − 1, then for eachr there is exactly onen, 2s − 1< n ≤ 2s+1− 1, such that
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ϑn ∈ [r 2−s, (r + 1)2−s). Let

N{ j = n1+ 1, . . . ,n2;ϑ j ∈ I } (2.12)

denote the number ofj , n1 < j ≤ n2, such thatϑ j is contained in an intervalI ⊂ [0, 1].
Let

δ(ϑ, n1, n2, I ) ≡ 1

n2− n1
N{ j = n1+ 1, . . . ,n2;ϑ j ∈ I } − |I | (2.13)

be the difference between the proportion of times thatϑ j is contained inI ⊂ [0, 1] and let
|I | be the length ofI . The following result [14] is rather useful in our error estimate in the
next section.

LEMMA 2.1. For the binary van der Corput sampling sequence,

δ(ϑ, n1, n2, I ) ≤ 3 ln(2(n2− n1))+ 1

n2− n1
, ∀ n1, n2, I . (2.14)

The above inequality shows that the binary van der Corput sampling sequence is equidis-
tributed on the interval [0, 1] since limn2→∞ δ(ϑ, n1, n2, I ) = 0 for each fixedn1, I . Thus
the sequence{θn | n = 1, 2, . . .} is equidistributed on the interval [−1, 1].

Remark 2.1. Of course, the van der Corput sampling sequence is not random (it is
actually pseudo-random [14]). Since this method has the random spirit and is originated
from the classical random choice method, we still call the method a random projection
method. It is an interesting project to investigate the behavior of other random or pseudo-
random sequences for this method.

2.3. An Error Estimate on the Numerical Shock Speed

Now we will prove that the random projection method, when combined with the first-
order upwind method or the Lax–Friedrichs method for the convection term, can capture
the correct location of discontinuities for the scalar model problem (2.1) with first-order
accuracy. The proof and results are similar to the error estimate of Glimm’s scheme for the
homogeneous conservation laws [6].

First we consider the upwind method. Without loss of generality, we assumef ′(u) > 0.
Consider the first-order upwind method for the convection, followed by the random pro-
jection:

Sc(k): u∗j = un
j −

k

h

(
f
(
un

j

)− f
(
un

j−1

))
, (2.15)

Sθ (k): un+1
j =

{
1, if u∗j > θn,

−1, if u∗j ≤ θn.
(2.16)

It is easy to see that the above method preserves the monotonicity property of the upwind
method. Under the usual CFL condition, i.e., supj,n| f ′(un

j )|k/h < 1, the above algorithm
is stable.
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First, at any time stepn, there is anl (n) = j0, j0 an integer, such that

un
j =

{
1, if j ≤ l (n),

−1, if j > l (n).
(2.17)

Here we assume thatx0, the initial point of discontinuity, is a grid point; i.e.,x0 = l (0)h.
After the convection step (2.15), one has

u∗j =


1, if j ≤ l (n),

µ, if j = l (n)+ 1,

−1, if j > l (n)+ 1,

(2.18)

where

1> µ = k

h
( f (1)− f (−1))− 1= 2ks

h
− 1≡ 2λ− 1> −1 (2.19)

with λ = ks/h. In the second step, the random projection (2.16) gives

un+1
j =

{
1, if j ≤ l (n),

−1, if j > l (n)+ 1; un+1
l (n)+1 =

{
1, if µ > θn,

−1, if µ ≤ θn.
(2.20)

Thus one has

l (n+ 1) =
{

l (n)+ 1, if µ > θn,

l (n), if µ ≤ θn.
(2.21)

Therefore the discontinuities in the approximate solution at each time step either move one
grid point to the right or do not move. We now examine the accumulative effect over many
time steps. In fact, from (2.21), noting (2.19), (2.12), and (2.11), one gets

l (n) = l (0)+ N{ j = 1, . . . ,n; θ j ∈ [−1, µ)}
= l (0)+ N{ j = 1, . . . ,n;ϑ j ∈ [0, (µ+ 1)/2)}
= l (0)+ N{ j = 1, . . . ,n;ϑ j ∈ [0, λ)}. (2.22)

Combining (2.22), (2.17), (2.4), (2.13), and (2.14) withn1 = 0,n2 = n, andI = [0, λ), we
obtain

|x0+ stn − l (n)h| = |stn − hN{ j = 1, . . . ,n;ϑ j ∈ [0, λ)}|
= |stn − nh{λ+ δ(ϑ, 0, n, [0, λ))]|
= nh|δ(ϑ, 0, n, [0, λ))| ≤ h(1+ 3|ln(2tn/k)|)
= h[1+ 3|ln(2stn/(λh))|]. (2.23)

This gives the accuracy for the upwind method.
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Next we consider the Lax–Friedrichs method followed by random projection:

Sc(k): u∗j = un
j −

k

2h

(
f
(
un

j+1

))− f
(
un

j−1

)+ √ak

2h

(
un

j+1− 2un
j + un

j−1

)
, (2.24)

Sθ (k): un+1
j =

{
1, if u∗j > θn,

−1, if u∗j ≤ θn.
(2.25)

In (2.24), the positive constant
√

a ≥ | f ′(u)| for all u. After the convection step (2.24),
one has

u∗j =


1, if j ≤ l (n)− 1,

µ1, if j = l (n),

µ2, if j = l (n)+ 1,

−1, if j > l (n)+ 1,

(2.26)

where

1> µ1 = k

h
(s−√a)+ 1> µ2 = k

h
(s+√a)− 1> −1. (2.27)

In the second step, the random projection (2.25) gives

un+1
j =

{
1, if j ≤ l (n)− 1,

−1, if j > l (n)+ 1,
(2.28)

while

un+1
l (n) =

{
1, if µ1 > θn,

−1, if µ1 ≤ θn.
un+1

l (n)+1 =
{

1, if µ2 > θn,

−1, if µ2 ≤ θn.
(2.29)

Thus one has

l (n+ 1) =


l (n)− 1, if µ1 < θn,

l (n), if µ2 < θn ≤ µ1,

l (n)+ 1, if µ2 ≥ θn.

(2.30)

Therefore the numerical shock, after each time step, could move to the left by one grid
point, not move, or move to the right by one grid point. We now examine the accumulative
effect over many time steps, which should take into account the possibilities of both moving
forward and backward. By the definition ofN in (2.12),

l (n) = l (0)+ N{ j = 1, . . . ,n; θ j ∈ [−1, µ2]} − N{ j = 1, . . . ,n; θ j ∈ (µ1, 1]}

= l (0)+ N

{
j = 1, . . . ,n;ϑ j ∈

[
0,
µ2+ 1

2

]}
− N

{
j = 1, . . . ,n;ϑ j ∈

[
µ1+ 1

2
, 1

]}
= l (0)+ N{ j = 1, . . . ,n;ϑ j ∈ [0, λ2] − N{ j = 1, . . . ,n;ϑ j ∈ (λ1, 1]}, (2.31)
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whereλi = 1
2(µ1+ 1) for i = 1, 2. Using the definition ofµ1, µ2 in (2.27), one obtains

|x0+ stn − l (n)h|
= |stn − hN{ j = 1, . . . ,n;ϑ j ∈ [0, λ2]} + hN{ j = 1, . . . ,n;ϑ j ∈ (λ1, 1]}|
= |stn − nh[λ2+ δ(ϑ, 0, n, [0, λ2])]+ nh[1− λ1+ δ(ϑ, 0, n, (λ,1])]|

=
∣∣∣∣snk− nk

1

2
(s+√a)− nk

1

2
(s−√a)− nhδ(ϑ, 0, n, [0, λ2])

+ nhδ(ϑ, 0, n, (λ1, 1])

∣∣∣∣
≤ nh|δ(ϑ, 0, n, [0, λ2])| +nh|δ(ϑ, 0, n, (λ1, 1])| ≤2h(1+ 3|ln(2tn/k)|)
= 2h(1+ 3|ln(2stn/(λh))|. (2.32)

This is the accuracy estimate for the Lax–Friedrichs method.
The above analyses can be summarized by the following theorem:

THEOREM 2.1. Given T> 0, the difference between the shock location of the exact
solution, x0+ stn, and the numerical one, l (n)h, as determined by the random projection
method

un+1 = Sθ (k)Sc(k) un,

where Sc(k) is the first-order upwind or Lax–Friedrichs method, has the estimate

|x0+ stn − l (n)h| ≤ C(T)h|ln h|, (2.33)

for any n such that0< tn ≤ T and fixedλ = sk/h, where C(T) is a positive constant
depending on|ln(T)|.

From this inequality, one can see that the error is first-order(O(h|ln h|)).

2.4. Numerical Examples

EXAMPLE 2.1. We solve (2.1) and (2.2) withf (u) = u2

2 + u, α = 0, ε = 10−4, and
x0 = 0.2 on the interval [0, 1] with 101 grid points using the random projection method
(2.15)–(2.16). The mesh sizeh = 0.01. For this example the speed of discontinuity

s= f (1)− f (−1)

2
= 1.

Figure 1 shows the computed results att = 0.2, 0.4, and 0.6 using different time steps
k = 0.004, 0.001, and 0.0001. The numerical solutions indeed capture the shock propagation
with the correct speed.

As a comparison, we use the explicit method

un+1
i = un

i −
k
(

f
(
un

i

)− f
(
un

i−1

))
h

+ k

ε

(
un

i − α
)(

1− (un
i

)2)
. (2.34)
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FIG. 1. Numerical results using the random projection method for example 2.1.ε = 10−4, h = 0.01.−: True
solution;++: computed solutions. (a)k = 0.004; (b)k = 0.001; and (c)k = 0.0001.

For this method, one has to choosek < ε for numerical stability, even ifhÀ ε. Figure 2
shows the computed results for (a)ε = 0.1 andk = 0.001; (b)ε = 0.01 andk = 0.0001;
(c) ε = 0.001 andk = 0.00001; and (d)ε = 0.0001 andk = 0.000001. In this example, the
correct locations of discontinuity att = 0.0, 0.2, 0.4, and 0.6 are atx = 0.2, 0.4, 0.6, and
0.8 respectively. We observe that when the mesh resolves the reaction zone, as in cases (a)
and (b), one can get the correct shock speed. In contrast, when the mesh does not resolve
the reaction zone, as in cases (c) and (d), one cannot get the correct solution even with a
time step smaller thanε. Instead the numerical shock speed is zero. This indicates that the
incorrect shock speed is induced by the spatial underresolution rather than the temporal one.

EXAMPLE 2.2. We solve (2.1) and (2.2) withf (u) = eu,α = 0,ε = 10−4, andx0 = 0.2
over the interval [0, 1] with 101 grid points. The mesh sizeh = 0.01. For this example the
speed of discontinuitys= ( f (1)− f (−1))/2= (e− e−1)/2 which is an irrational number.
Figure 3 shows the numerical solutions att = 0.2, 0.4, and 0.6 using different time steps
k = 0.001, and 0.0001. In this example, the shock speed is correctly captured by the random
projection method.
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FIG. 2. Numerical results using the explicit method (2.34) for Example 2.1.h = 0.01. −: True solu-
tion; ++: computed solutions. (a)ε = 0.1, k = 0.001; (b)ε = 0.01, k = 0.0001; (c)ε = 0.001,k = 0.00001;
(d) ε = 0.0001,k = 0.000001.

FIG. 3. Numerical results by using the random projection method for Example 2.2.ε = 10−4, h = 0.01.−:
True solution;++: computed solutions. (a)k = 0.001; (b)k = 0.0001.
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Figures 1 and 3 show that the random projection method can capture the correct speeds
of the discontinuities for scalar hyperbolic conservation laws with stiff source terms even
when the reaction scale is not resolved spatially or temporally. The location of the shock
may be off by a few grid points at each time step, but such a deviation never grows in time
during our experiments to longer than that shown in the figures.

2.5. Hyperbolic Equations with the Ricatti Sources

The random projection method can be applied to numerical simulation of hyperbolic
conservation laws with stiff, Ricatti sources:

ut + f (u)x = 1

ε
u(1− u). (2.35)

Without loss of generality we start with the piecewise constant initial data

u(x, 0) = u0(x) =
{

1, x ≤ x0,

0, x > x0.
(2.36)

Hereε is a small parameter,f is a convex function ofu, i.e., f ′′(u) > 0, andx0 is any given
point.

The Ricatti source in (2.35) admits two local equilibria, the unstable oneu= 0 and the
stable oneu= 1 [20]. When the solution is at equilibrium, the Ricatti source has no effect.
Thus the exact solution is a shock discontinuity connectingu= 1 withu= 0 and propagating
to the right with a speed determined by the Rankine–Hugoniot jump condition:

s̄= f (1)− f (0). (2.37)

Namely,

u(x, t) =
{

1, if x ≤ x0+ s̄t,

0, if x > x0+ s̄t.
(2.38)

The idea of the random projection method is to replace the unstable equilibrium,u = 0,
with the uniformly distributed random sequenceϑn ∈ (0, 1), defined in (2.10). Letu∗ =
Sc(k)un with Sc(k) being the discrete operator for the homogeneous equation (2.5) over a
time step. The random projection operatorSϑ is defined as

Sϑ(k): un+1
j =

{
1, if u∗j > ϑn,

0, if u∗j ≤ ϑn,
for all j . (2.39)

In this method, one random value ofϑn will be selected per time step for all grid points.
Combining with the convection step, we get

Srp(k): un+1 = Sϑ(k)Sc(k)u
n. (2.40)

We can also obtain a similar error estimate for the numerical shock speed for problems
with the Ricatti source.
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THEOREM 2.2. Given T> 0, the difference between the shock location in the exact
solution of the problem(2.35),x0+ s̄tn, and the numerical one, l (n)h, as determined by the
random projection method(2.40)in which Sc(k) is the first-order upwind or Lax–Friedrichs
method, estimated as

|x0+ s̄tn − l (n)h| ≤ C(T)h|ln h|, (2.41)

for any0< tn ≤ T , and fixedλ̄ = s̄k/h, where C(T) is a positive constant depending on
|ln(T)|.

From this inequality, one can see that the error is first order(O(h|ln h|)).
Remark 2.2. When one considers the problem (2.35) with the Ricatti source

(1/ε)u(1− u) replaced by(1/ε)u(1+ u), our random projection method still works after
the sampling sequenceϑn is replaced by another sequenceθ̃n = ϑn − 1, which is equidis-
tributed on the interval [−1, 0].

3. TWO-DIMENSIONAL SCALAR PROBLEMS

The random projection method can be extended to two space dimensions in a straight-
forward way. Consider the two-dimensional scalar hyperbolic conservation law with stiff
reaction term

ut + f (u)x + g(u)y = 1

ε
ψ(u) ≡ 1

ε
(u− α)(1− u2), −1< α < 1, (3.1)

with piecewise constant initial data

u(x, y, 0) = u0(x, y) =
{

1, (x, y)∈Ä0⊂R2,

−1, (x, y) ∈ R2 \Ä0.
(3.2)

Hereε is the reaction time,f andg are convex functions ofu, i.e., f ′′(u)>0 andg′′(u)>0,
andÄ0 is a given domain inR2.

Let the grid points(xi , yj )= (ih, jh), i, j = . . . ,−1, 0, 1, . . . ,with equal mesh spacing
h. The time levelstn= nk, k= 0, 1, 2, . . . , are also uniformly spaced with time stepk.
Let un

i, j be the approximate solution ofu at (xi , yj , tn)= (ih, jh, nk). Similarly to the
one-dimensional scalar model problem, we use the fraction step method consisting of the
convection step for

ut + f (u)x + g(u)y= 0 (3.3)

followed by the reaction step

ut = 1

ε
(u− α)(1− u2). (3.4)

Let Sf,g(k) be any high resolution shock capturing method for (3.3), and letu∗ = Sf,g(k)un.
The random projection for the reaction is given by

Sθ (k): un+1
i j =

{
1, if u∗i j > θn,

−1, if u∗i j ≤ θn,
for all i, j, (3.5)
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where

θn= 2ϑn − 1,

with ϑn being the van der Corput sampling sequence on the interval [0, 1] defined in (2.10).
Our fractional step method is then

un+1= Sθ (k)Sf,g(k)u
n. (3.6)

The stability condition for this algorithm is the usual CFL condition determined by the
convection part. The initial data are discretized as

u0
i j =

{
1, (xi , yj )= (ih, jh) ∈ Ǟ0,

−1, otherwise.
(3.7)

Now we will test algorithm (3.6) with two numerical examples. In our numerical computa-
tions in this section, the operatorSf,g(k) is the first-order upwind scheme using dimensional
splitting.

EXAMPLE 3.1. We solve (3.1) withf (u)= g(u)= u, α= 0, andε= 10−6. The initial
condition is

u(x, y, 0) = u0(x, y) =
{

1, x + y ≤ 1,

−1, x + y > 1.
(3.8)

This problem is solved on the domain [0, 1]2 with 101× 101 grid points using the 2D
random projection method (3.6). The mesh sizeh= 0.01. Dirichlet boundary conditions
are used at inflow boundaries (x= 0, andy= 0), and outflow boundary conditions are used
on the other two sides of the boundary. For this example the speed of the discontinuity is 2 in
bothx andy directions; see [10]. Figure 4 shows the computed results of the discontinuity
front (i.e., contour ofu= 0) at t = 0.2, 0.4, and 0.45 for time stepsk= 0.005 and 0.001

FIG. 4. Numerical results for Example 3.1 using the 2D random projection method (3.6).ε = 10−6, h = 0.01.
(a)k = 0.005; (b)k = 0.001.
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FIG. 5. Numerical results for Example 3.2 by using the 2D random projection method (3.6).ε = 10−6,
h = 0.005. (a)k = 0.0025; (b)k = 0.001.

respectively. At these times thex- andy-coordinates of the exact solutions will be 0.4, 0.8,
and 0.9 respectively. The shock propagation was accurately captured.

EXAMPLE 3.2. Now consider the nonlinear convection with reaction

ut + (u2/2)x + (u2/2)y= 106u(1− u)(u− 1/2), (3.9)

with initial condition

u(x, y, 0) = u0(x, y) =
{

1, x2+ y2 ≤ 0.16,

0, x2+ y2 > 0.16.
(3.10)

This problem is interesting because of the nonlinear flux functions and the curved shock
front. The equilibria are different from those of (3.1), so we have to use the van der Corput
sampling sequencesθn=ϑn. We solve this problem on the domain [0, 1]2 with 201×
201 grid points using the 2D random projection method (3.6). So the mesh sizeh= 0.005.
Homogeneous Neumann boundary conditions are used at the inflow boundaries (x= 0 and
y= 0), while outflow boundary conditions are imposed on the other sides of the boundary.
For this example the shock front moves with speed 0.5 along the axes [10]. Figure 5 shows
the computed results of the discontinuity front (i.e. contour ofu= 0.5) at t = 0.4, 0.8, and
1.0 for time stepsk= 0.0025 and 0.001 respectively. At these times the exact solutions have
thex- andy-coordinates 0.6, 0.8, and 0.9 respectively. The numerical solutions give good
approximate shock locations at these times.

4. ONE-DIMENSIONAL DETONATION WAVES

In this section, we introduce the random projection method for the computation of one-
dimensional stiff detonation waves. The key idea is tomake the ignition temperature
random.

Consider the Euler equations that model the time-dependent flow of an inviscid, com-
pressible, reactive gas in one space dimension. Without heat conduction and viscosity, the
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equations take the form

Ut + F(U )x = 1

ε
9(U ), (4.1)

U =


ρ

m
e
ρz

, F(U ) =


m

m2/ρ + p

m(e+ p)/p

mz

, 9(U ) =


0
0
0

−ρze−T0/T

 ≡


0
0
0

ψ(U )

.
The dependent variablesρ(x, t),m(x, t), e(x, t), andz(x, t) are the density, momentum,
total energy, and fraction of unreacted fluid, respectively. The pressure is given by

p= (γ − 1)

(
e− m2

2ρ
− q0ρz

)
and the temperature is defined asT = p/ρ. Let u=m/ρ be the velocity. The parameters
q0, T0, γ , andε correspond to chemical heat release, ignition temperature,cp to cv ratio,
and reaction time.

We will focus on the discontinuous solutions of detonation waves. For these waves the
viscosity is not as important as for the slower deflagration wave solutions.

Equations (4.1) are referred to the reactive Euler equations with Arrhenius kinetics [8].
We will also consider (4.1) with

−1

ε
ρze−T0/T

replaced by the Heaviside kinetics

−1

ε
ρzH(T − T0),

whereH(x)= 1 for x> 0, andH(x)= 0 for x< 0. Actually the stiffness issue with the
Heaviside kinetics is more severe [11].

Now we will describe the random projection method for solving the problem (4.1) with
piecewise constant initial data

(ρ(x, 0), u(x, 0), p(x, 0), z(x, 0)) =
{
(ρl, ul, pl, 0), if x ≤ x0,

(ρr, ur, pr, 1), if x > x0,
(4.2)

where x0 is a given point. For simplicity these data are chosen so that the detonation
moves to the right. The case where the detonation moves to the left can be dealt with
similarly. LetUn

j = (ρn
j ,m

n
j , e

n
j , (ρz)nj ) be the approximate solution ofU = (ρ,m, e, ρz) at

(xj , tn)= ( jh, nk). As with the scalar model problem, a fractional step method is used. In
the first step, the inviscid compressible Euler equations,

Ut + F(U )x = 0, (4.3)

are solved using a standard shock capturing methodSF (k). Since any shock capturing
method will have a few grid points in the shock profile, the corresponding temperature
values, once above the critical temperatureT0, may trigger a too early chemical reaction,
causing non-physical waves [1, 7].
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4.1. Random Projection Methods for the Reaction Term

In the second step of the fractional step method, we solve the chemical reaction term,

ρt = 0, mt = 0, et = 0, (ρz)t = 1

ε
ψ(U ), (4.4)

using the random projection method. Here the ignition temperatureT0 is made random.
This can be successful since the speed of the front does not depend on the specific value of
T0, as long as it is in the range between the left and right states. LetU ∗ = SF (k)Un. Our
first choice for the random projection operatorSθ is defined as follows. Let

θn = (Tl − Tr)ϑn + Tr, Tl = pl/ρl, Tr = pr/ρr,

with ϑn (see (2.10) for detail) being the van der Corput sampling sequence on the interval
[0, 1]. For all j ,

S0(k): ρn+1
j = ρ∗j , mn+1

j = m∗j , en+1
j = e∗j ,

zn+1
j =

{
0, if T∗j > θn,

1, if T∗j ≤ θn.
(4.5)

This operator will be referred to asglobal random projection, since the projection operator
Sθ (k) is used for all grid points.

The combination of the two steps gives the fractional step method as

S1(k): Un+1 = Sθ (k)SF (k)U
n. (4.6)

Since the reaction zone is local, it makes more sense to do the random projection around
the reaction zone. In fact, the global projection could produce incorrect solutions when an
intermediate stateTm behind the detonation (thus corresponding toz= 0, namely the burnt
state) emerges betweenTl andTr. Since the random numbers are chosen over the interval
[Tr, Tl ], and if Tm ≥ Tl , the global random projection treats the state ofTm as burnt and the
results will be corrected. However, ifTr < Tm < Tl , then once a random number is aboveTm,
the state ofTm will be treated as an unburnt state and chemical reaction will take place in that
state, which yields the wrong solution. This will be shown by Example 4.4 in this section.

We can avoid the problem of global random projection by the followinglocal random
projection method, which performs the random projection only near the detonation front.
This guarantees that a state, once burnt, remains burnt. The location of the front can be
easily determined from the value ofz.

First notice that, althoughz may have some intermediate values between 0 and 1 after
the convection step, the projection step always makesz either 0 or 1. Therefore, at any time
steptn, there is anl (n) = j0, j0 an integer, such that

zn
j =

{
0, if j ≤ l (n),

1, if j > l (n).

Herel (n) is the location of the jump for numerical solution ofz in the approximate solution
at timetn. Since the projection operator will make the detonation move at most a few grid
points, the new location of the detonation front is only a few grids away from that of the
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previous time step. Thus one need only to check the value ofT at several points nearl (n)
for the value ofl (n+ 1). Therefore, (4.5) can be replaced with the local projection around
the front

S̃θ (k): pn+1
j = p∗j , mn+1

j = m∗j , en+1
j = e∗j ,

Setl (n+ 1) := l (n)− 1, (4.7)

For l = l (n)− 1, l (n), . . . , l (n)+ d do: l (n+ 1) = l , if T∗l > θn;

zn+1
j =

{
0, if j ≤ l (n+ 1),

1, if j > l (n+ 1); (4.8)

End if

whered is the number of smeared points in the shock layer. From our numerical experience,
for Chapman–Jouguet (C–J) detonations and strong detonations,d = 1 works very well. In
the above algorithm, onlyd + 2 points will be scanned.

The fractional step method based on this local projection is

S2(k): Un+1 = S̃θ (k)SF (k)U
n. (4.9)

For numerical comparison, we also describe thedeterministic method, in which one
always uses the given deterministic ignition temperatureT0. In the case of Heaviside kinetics,
an implicit method for (4.4) gives

Sr(k): pn+1
j = p∗j , mn+1

j = m∗j , en+1
j = e∗j ,

(ρz)n+1
j =

{
(ρz)∗j , if Tn+1

j ≤ T0,

(ρz)∗j /(1+ k/ε), if Tn+1
j > T0.

(4.10)

Sinceρzdecreases whenT becomes larger thanT0, one gets the same result if the testTn+1
j >

T0 is replaced byT∗j > T0 [11], thereby making it unnecessary to solve any nonlinear
equations. Then the corresponding algorithm is

S3(k): Un+1 = S̄r(k)SF (k)U
n, (4.11)

where

S̄r(k): pn+1
j = p∗j , mn+1

j = m∗j , en+1
j = e∗j ,

(ρz)n+1
j =

{
(ρz)∗j , if T∗j ≤ T0,

(ρz)∗j /(1+ k/ε), if T∗j > T0.
(4.12)

The stability condition for all three algorithms is the usual CFL condition determined by
the convection terms.

4.2. Numerical Results for Detonation Wave Problems

Now we will test the above three algorithmsS1, S2, andS3 by a variety of numerical
examples, including the C–J detonation and strong detonations. In our computations, we
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always use the Heaviside kinetics. Among the numerical examples in this and the next
sections, the convection step is solved using the second-order TVD relaxed scheme [15],
which is free of any Riemann solver and local characteristic decomposition. We choose
d = 5 in (4.7)–(4.8) in our computations in this subsection.

EXAMPLE 4.1(A Chapman–Jouguet (C–J) Detonation). We consider the case of ozone
decomposition C–J detonation discussed and computed in [1, 7]. We use the CGS units and
the following parameter values:

γ = 1.4, q0 = 0.5196× 1010,
1

ε
= K = 0.5825× 1010, T0 = 0.1155× 1010.

The initial data are piecewise constants defining a C–J detonation as a single wave (recall
that in the Chapman–Jouguet model a C–J detonation corresponds to a sonic detonation
or, in other words, a sharp reaction wave that moves at the minimal speed relative to the
unburnt gas; see [8] for more details), given by

(ρ, u, p, z) =
{
(ρ0, u0, p0, 1), if x > 0.005,

(ρCJ, uCJ, pCJ, 0), if x ≤ 0.005,

where p0 = 8.321× 105, ρ0 = 1.201× 10−3, u0 = 0, and pCJ= 6.270× 106, ρCJ=
1.945× 10−3, uCJ= 4.162× 104. In fact, for any given initial state (ρ0, u0, p0, 1) on
the right, one can obtain the C–J initial state on the left by [5, 8]

pCJ= −b+ (b2− c)1/2, (4.13)

ρCJ= ρ0[ pCJ(γ + 1)− p0]

γ pCJ
, (4.14)

DCJ=
[
ρ0u0+ (γ pCJρCJ)

1/2
]/
ρ0, (4.15)

uCJ= DCJ− (γ pCJ/ρCJ)
1/2, (4.16)

whereb = −p0− ρ0q0(γ − 1), c = p2
0 + 2(γ − 1)p0ρ0q0/(γ + 1), andDCJ is the speed

of the sharp front (in a C–J detonation).
Observe that the valuespCJ, ρCJ, anduCJ depend only onp0, u0, ρ0, andq0 (and not on

K , i.e.,ε or T0). The speed of the sharp front in Example 4.1 isDCJ= 1.088× 105. In this
example the width of the reaction zone is approximately 5× 10−5. See [1, 7].

This problem is solved on the interval [0, 0.05]. The “exact” solutions are obtained
by using the deterministic method (4.11) and choosingh = 5× 10−6 (i.e., 10,001 grid
points on the interval [0, 0.05]) andk = 5× 10−12. This mesh size and time step re-
solve the reaction scale. Now we compare the results obtained by the random projection
methods and the deterministic method when the reaction zone is underresolved. The solu-
tions are displayed att1 = 5× 10−8, t2 = 1× 10−7, andt3 = 2× 10−7 in Figs. 6–8. The
grid sizeh = 5× 10−4 (i.e., 101 grid points for the interval [0, 0.05]) for all numerical
experiments.

Figure 6 shows the results of the global random projection method (4.6) withk = 5×
10−10; Fig. 7 shows the results of the deterministic method (4.11) with the same time step
k = 5× 10−10; and Fig. 8 shows the results of the deterministic method (4.11) with a much
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FIG. 6. Numerical results for a C–J detonation in Example 4.1 by using the global random projection method
(4.6).h = 5× 10−4, k = 5× 10−10.−: Exact solutions;++: computed solutions. (a) TemperatureT ; (b) pressure
p; (c) densityρ; and (d)z.

smaller time stepk = 5× 10−12. (In this case the time step resolves the reaction time but
the spatial discretization does not resolve the reaction zone.)

In Fig. 6, the global random projection method captures the correct speed of the C–J det-
onation with underresolved spatial and time discretizations. There are some mild statistical
fluctuations behind the detonation, which is the nature of a random method. Figures 7 and
8 show that, when the reaction zone is underresolved spatially, no matter how small the
time step is, one cannot obtain the correct speed of the discontinuity by using the explicit or
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FIG. 7. Numerical results for Example 4.1 by using the deterministic method (4.11).h = 5× 10−4, k =
5× 10−10.−: Exact solutions;++: computed solutions. (a) TemperatureT ; (b) pressurep; (c) densityρ; and (d)z.

implicit deterministic method for the chemical terms. A spurious weak detonation appears
ahead of the detonation wave. This seems to suggest that the stiffness problem is due to the
spatial rather than the temporal underresolution.

EXAMPLE 4.2 (A Strong Detonation). The initial data in this example are

(ρ, u, p, z) =
{
(ρ0, u0, p0, 1), if x > 0.005,

(ρl, ul, pl, 0), if x ≤ 0.005,
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FIG. 8. Numerical results for Example 4.1 by using the deterministic method (4.11).h = 5× 10−4,
k = 5× 10−12. −: Exact solutions;++: computed solutions. (a) TemperatureT ; (b) pressurep; (c) densityρ;
and (d)z.

whereul = 9.162× 104 > uCJ, ρl = ρCJ, pl = pCJ, and p0, u0, ρ0, pCJ, uCJ, ρCJ, and all
the other parameters (i.e.γ , q0, K , andT0) are the same as those in Example 4.1. The
exact solution consists of a right-moving strong detonation [5], a right-moving contact
discontinuity, and a stationary shock.

The “exact” solution is obtained similarly to that in Example 4.1. Figures 9 and 10
show the numerical solutions by the local random projection method and the deterministic
method respectively. The local random projection method can capture the correct speed of
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FIG. 9. Numerical results for Example 4.2 by using the local random projection method (4.9).h = 5× 10−4,
k = 5× 10−10. −: Exact solutions;++: computed solutions. (a) TemperatureT ; (b) pressurep; (c) densityρ;
and (d)z.

the discontinuity of the strong detonation wave, among other waves, although the reaction
zone is not resolved spatially or temporally. However, the deterministic method produces
spurious waves.

EXAMPLE 4.3 (Another Strong Detonation). The initial data are

(ρ, u, p, z) =
{
(ρ0, u0, p0, 1), if x > 0.005,

(ρl, ul, pl, 0), if x ≤ 0.005,
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FIG. 10. Numerical results for Example 4.2 by using the deterministic method (4.11).h = 5× 10−4, k =
5× 10−10. −: Exact solutions;++: computed solutions. (a) TemperatureT ; (b) pressurep; (c) densityρ; and
(d) z.

whereul = 9.162× 104 > uCJ, ρl = ρCJ, pl = 8.27× 106 > pCJ, andp0, u0, ρ0, pCJ, uCJ,
ρCJ, and all other parameters are the same as those in Example 4.1. The wave pattern in
this example is the same as that in Example 4.2. The exact solution is obtained like that
in Example 4.1. Figures 11 and 12 show the numerical solutions obtained by the local
random projection method and the deterministic method, respectively. The local random
projection method captures the propagation of all waves, while the deterministic method
gives a spurious weak detonation.
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FIG. 11. Numerical results for Example 4.3 by using the local random projection method (4.9).h = 5× 10−4,
k = 5× 10−10. −: Exact solutions;++: computed solutions. (a) TemperatureT ; (b) pressurep; (c) densityρ;
and (d)z.

EXAMPLE 4.4. The initial data are

(ρ, u, p, z) =
{
(ρ0, u0, p0, 1), if x > 0.005,

(ρl, ul, pl, 0), if x ≤ 0.005,

where ul = uCJ, ρl = ρCJ, and pl = 8.27× 106 > pCJ while p0, u0, ρ0, pCJ, uCJ, ρCJ,
and other parameters are the same as those in Example 4.1. The solution consists of a
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FIG. 12. Numerical results for Example 4.3 by using the deterministic method (4.11).h = 5× 10−4, k =
5× 10−10. −: Exact solutions;++: computed solutions. (a) TemperatureT ; (b) pressurep; (c) densityρ; and
(d) z.

right-moving strong detonation wave, a right-moving contact discontinuity, and a left-
moving rarefaction wave. The exact solution is obtained that in Example 4.1. We take
h= 5× 10−4 andk= 5× 10−10 and output the solutions at timet1= 5× 10−8, t2= 1×
10−7, andt3= 2× 10−7.

Figure 13 shows the numerical solutions using the local random projection method (4.9),
which captures all wave propagations. Figure 14 shows those by the deterministic method
(4.11), which produced a spurious weak detonation.
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FIG. 13. Numerical results for Example 4.4 by using the local random projection method (4.9).h = 5× 10−4,
k = 5× 10−10. −: Exact solutions;++: computed solutions. (a) TemperatureT ; (b) pressurep; (c) densityρ;
and (d)z.

We also computed the solution with the global random projection method and depict
the numerical solutions in Fig. 15. The solution is essentially wrong, due to the improper
projection away from the detonation front. Here the temperature,Tm, of the equilibrium
state just behind the detonation front is less thanTl . The global random projection method
triggers the location of the right-moving contact discontinuity rather than the location of
the detonation front in the time steps whenTm < θn < Tl . This causes the wrong numerical
solutions. In summary, the local random projection method can capture the correct speeds
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FIG. 14. Numerical results for Example 4.4 using the deterministic method (4.11).h = 5× 10−4, k =
5× 10−10. −: Exact solutions;++: computed solutions. (a) TemperatureT ; (b) pressurep; (c) densityρ; and
(d) z.

of both C–J and strong detonations in all the examples presented here, when the numerical
discretization does not resolve the reaction scale. The global random projection algorithm
(4.6) produces similar results for the first three examples; however, it fails to produce good
approximate solutions in Example 4.4.

In practice, we recommend using the local random projection method (4.9) because it is
more efficient and works well for all the cases we have considered.
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FIG. 15. Numerical results for Example 4.4 using the global random projection method (4.6).h = 5× 10−4,
k = 5× 10−10. −: Exact solutions;++: computed solutions. (a) TemperatureT ; (b) pressurep; (c) densityρ;
and (d)z.

5. TWO-DIMENSIONAL DETONATION WAVES

Now we extend the local random projection method to the computation of two-dimensional
detonation waves. The equations are

Ut + F(U )x + G(U )y = 1

ε
9(U ), (5.1)
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U =


ρ

ρu
ρv

e
ρz

, F(U ) =


ρu

ρu2+ p
ρuv

(e+ p)u
ρuz

, G(U ) =


ρv

ρuv

ρv2+ p

(e+ p)u
ρvz

, 9(U ) =


0
0
0
0

ψ(U )

.

The dependent variablesρ(x, y, t), u(x, y, t), v(x, y, t), e(x, y, t), andz(x, y, t) are the
density,x- andy-velocities, energy, and fraction of unreacted fluid, respectively. The pres-
sure is given by

p = (γ − 1)

(
e− ρ u2+ v2

2
− q0ρz

)
and the temperature is defined asT = p/ρ. The parametersq0, T0, γ , and 1/ε are the same
as those in one-dimensional detonation waves.

For simplicity, we consider the detonation waves in a two-dimensional channel. Without
loss of generality, the initial data are

(ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0), z(x, y, 0))

=
{
(ρl, ul, 0, pl, 0), if x ≤ ξ(y),
(ρr , ur , 0, pr , 1), if x > ξ(y),

(5.2)

whereξ(y) is a given function ofy. Let Un
i j = (ρn

i j , ρ
n
i j u

n
i j , ρ

n
i j v

n
i j , e

n
i j , (ρz)ni j ) be the ap-

proximate solution ofU at (xi , yj , tn) = (ih, jh, nk). As in the one-dimensional case, the
fractional step method is used. In the first step, the inviscid compressible Euler
equations

Ut + F(U )x + G(U )y = 0 (5.3)

are solved by a high-resolution shock capturing methodSF,G(k). In the second step, the
chemical reaction term

ρt = 0, mt = 0, nt = 0, et = 0, (ρz)t = 1

ε
ψ(U ) (5.4)

is solved using the local random projection method.
At any time step, for eachj , there is anl j (n) = jn, jn an integer, such that

zn
i j =

{
0, if i ≤ l j (n),
1, if i > l j (n).

Herel j (n) is the location of the jump for the numerical solution ofz at the grid liney = yj

and at timetn. Since after each time step, the front moves byd grid points,l j (n+ 1) is at
mostd grid points away froml j (n). Thus one need only checkd points nearl j (n). Assume
that after the convection stepU ∗ = SF,G(k)Un, for eachj , the front at timetn+1 is located
at l j (n+ 1), which can be easily determined from the value ofz. Then the following local
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projection around the front is used in the second step:

Ŝθ (k): ρn+1
i j = ρ∗i j , mn+1

i j = m∗i j , nn+1
i j = n∗i j , en+1

i j = e∗i j ,

For j do

Setl j (n+ 1) := l j (n)− 1, (5.5)

For l = l j (n)− 1, l j (n), . . . , l j (n)+ d do :l j (n+ 1) = l , if T∗l j > θn;

zn+1
i j =

{
0, if i ≤ l j (n+ 1),

1, if i > l j (n+ 1).
(5.6)

Then the corresponding algorithm is

Un+1 = Ŝθ (k)SF,G(k)U
n. (5.7)

FIG. 16. Numerical results of density for Example 5.1 using the 2D local random projection method.h =
5× 10−5, k = 5× 10−11.
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The stability condition for this algorithm is still the usual CFL condition determined from
the convection term.

Now we will test algorithm (5.7) with a numerical example. We choosed = 1 in (5.5)–
(5.6) for the following example since the detonation is strong.

EXAMPLE 5.1 (A Two-Dimensional Detonation Wave). We consider the problem (5.1)
in a two-dimensional channel, where the upper and lower boundaries are solid walls. We
choose the sameγ , q0, ε, andT0 as in Example 4.1. The initial data in (5.2) areρr = ρ0,
ur = u0, pr = p0,ρl = ρCJ, ul = 8.162× 104 > uCJ, andpl = pCJ with ρl , ul , pl ,ρCJ, uCJ,
and pCJ given in Example 4.1.

One important feature of this solution is that the triple points travel in the transverse
direction and bounce back and forth against the upper and lower walls, forming a cellular
pattern [19].

This problem is solved on [0, 0.025]× [0, 0.005] with a 501× 101 mesh, and

ξ(y) =
{

0.004 |y− 0.0025| ≥ 0.001,
0.005− |y− 0.0025| |y− 0.0025| < 0.001.

Thus the mesh sizeh = 5× 10−5. The time step isk = 5× 10−11.
Figure 16 shows the evolution of density contours in time. One can see that the lo-

cal projection method produces the desired profile for the triple points. In contrast, the
triple points, obtained by the usual deterministic method [11] cease to move after some
time.

6. CONCLUSIONS

We propose a random projection method for numerical simulation of the hyperbolic
conservation laws with stiff source terms arising from chemically reactive flows. Our method
consists of two typical steps: solving the homogeneous hyperbolic conservation law by a
standard modern shock capturing method and using a project method for the stiff reaction
term. In the reaction step, we replace the deterministic ignition temperature with a uniformly
distributed random variable in a suitable domain. This random projection method captures
the propagation of the detonation waves with the correct speed when the reaction scale is not
numerically resolved. For model scalar conservation laws with a stiff source term, we prove
that this method, when the van der Corput sampling sequence is used, captures the correct
shock speed with first-order accuracy. Extensive numerical examples for one- and two-
dimensional scalar problems and one- and two-dimensional detonation waves demonstrate
the effectiveness of this novel method.

In the future we will conduct more numerical experiments to validate the applicability of
this new method. To conclude, we quote a remark by Chorin [4]: A certain randomness is a
property of many real flows, and thus a method which exhibits randomness is not necessarily
less desirable than a method which yields fully predictable answers.
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